
Sequential Sampling Equilibrium

Duarte Gonçalves∗

Abstract
This paper introduces an equilibrium framework based on sequential sampling
in which players face strategic uncertainty over their opponents’ behavior and
acquire informative signals to resolve it. Sequential sampling equilibrium delivers
a disciplined model featuring an endogenous distribution of choices, beliefs,
and decision times, that not only rationalizes well-known deviations from Nash
equilibrium, but also makes novel predictions supported by existing data. It
grounds a relationship between empirical learning and strategic sophistication,
and generates stochastic choice through randomness inherent to sampling,
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1. Introduction
When faced with a choice, such as which TV show to watch, snack to buy, or savings account
to open, decision-makers spend time and cognitive effort to resolve uncertainty about which
alternative is best. This gives rise to a fundamental trade-off between speed, how long it takes to
choose, and accuracy, the likelihood of choosing the best alternative.

Rooted in Wald’s seminal work (1947), sequential sampling emphasizes this trade-off between
speed and accuracy. It models the decision-maker’s reasoning as sampling informative signals,
reflecting the notion that individuals draw upon memory to guide their choices, even in novel
settings—a premise supported by neurological evidence.1 Initially adopted by cognitive sciences
to explain reaction times in perception problems (Ratcliff, 1978; Luce, 1986), sequential sampling
stands as a cornerstone for understanding the relationship between choice and decision time in
various domains, from consumer behavior to risky or intertemporal choice.2 Its success stems
from its ability to rationalize established empirical regularities, particularly a time-revealed in-

difference3 whereby slower choices are associated with weaker preference intensity and greater
choice randomness (Fudenberg et al., 2018; Alós-Ferrer et al., 2021).

When making decisions in strategic settings like online auction bidding, protest participation
decisions, or stock market transactions, individuals often grapple with uncertainty about others’
behavior, and spend time and cognitive effort to address this strategic uncertainty. And since
the cost and benefit of reasoning may vary across situations, the time and effort committed to
resolving this uncertainty is itself endogenous. These observations resonate with experimen-
tal evidence from strategic environments: Existing work has shown that in dominance-solvable
games, faster decisions are associated with less strategically sophisticated actions (Agranov et al.,
2015; Rubinstein, 2016; Recalde et al., 2018), and that stronger incentives entail longer decision
times and greater strategic sophistication (Alaoui and Penta, 2016; Alaoui et al., 2020; Alós-Ferrer
and Bruckenmaier, 2021; Esteban-Casanelles and Gonçalves, 2022). Moreover, in binary-action
games longer decision times tend to be associated with indifference (Schotter and Trevino, 2021;
Frydman and Nunnari, 2023). While these findings agree with our understanding of individual
decision-making, they are difficult to reconcile with existing equilibrium concepts.
1See e.g. Shadlen and Shohamy (2016), Duncan and Shohamy (2020), and Biderman et al. (2020).
2Fehr and Rangel (2011), Krajbich et al. (2014), Clithero (2018b), and Spiliopoulos and Ortmann (2018) provide reviews
of the existing literature in economics. Forstmann et al. (2016) surveys the literature in cognitive sciences.

3Early evidence can be found in Mosteller and Nogee (1951); Krajbich et al. (2010), Clithero (2018a), and Alós-Ferrer
and Garagnani (2022) provide more recent experimental evidence.
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This paper introduces an equilibrium framework based on sequential sampling in which players
face strategic uncertainty and acquire informative signals to resolve it. Players have a prior belief
about others’ distribution of actions and, before taking an action, they acquire costly signals about
others’ behavior. These signals are assumed to be informative of others’ behavior and therefore
to have informational value. Then, strategic uncertainty drives information acquisition and each
player optimally trades-off the cost and benefit to sample. As optimal sequential sampling renders
players’ action distributions dependent on their opponents’, a sequential sampling equilibrium

corresponds to a fixed-point, a consistent distribution of actions of all players. This delivers a
disciplined model featuring an endogenous distribution of choices, beliefs, and decision times,
that not only rationalizes empirical patterns relating choices and decision times and well-known
deviations from Nash equilibrium, but also makes novel predictions supported by existing data.
Moreover, it provides a rationale for Nash equilibrium as a limit case when sampling costs vanish.

The solution concept builds on an individual decision-making model of sequential sampling in a
rich environment of choice under uncertainty. Players effectively act as decision-makers: each
takes as given others’ uncertain behavior, characterized by an unknown distribution. Sequential
sampling serves as a stylized model of stepwise reasoning about others’ behavior, occurring prior
to making a decision.4 Each player faces an optimal stopping problem, trading-off informational
gains and costs. Upon stopping, players choose an action to maximize their expected payoff,
given their posterior beliefs. Optimal sequential sampling yields stochastic choice through the
randomness inherent to sampling, without relying on indifference or choicemistakes. The actions
chosen upon stopping depend on posterior beliefs, informed by the sampled observations, whose
distribution depends on others’ behavior. For simplicity, we focus on the case in which players
can sample at a cost from their opponents’ choice distribution and defer the discussion of more
general information structures.

A sequential sampling equilibrium determines an endogenous joint distribution of actions, be-
liefs, and stopping time. Equilibrium emerges as a consistency condition on the distribution over
players’ actions arising from the fact that signals sampled are informative. We show a sequen-
tial sampling equilibrium always exists. The proof follows from the novel observation that each
player’s optimal stopping time is uniformly bounded with respect to opponents’ distribution of
actions—which renders this into a computationally tractable finite-horizon problem. While our
equilibrium definition is in terms of action distributions, a player’s optimal sequential sampling
4See Alaoui and Penta (2022) for an axiomatization of the value of stepwise reasoning as the value of sampling
information, analogous to our model.
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together with the equilibrium distribution of opponents’ actions pins down an endogenous distri-
bution of actions, beliefs, and stopping time. Furthermore, as a player is uncertain about others’
(equilibrium) distribution of actions, and the latter corresponds to but one of the possible action
distributions the player entertains, equilibrium stopping time does not correspond to the players’
expected costs of information.

Sequential sampling equilibrium provides a rationale for the relationship between higher incen-
tives, longer decision times, and more sophisticated play. While sequential sampling equilibrium
does allow for players to choose non-rationalizable with positive probability, we prove that when
scaling up players’ payoffs, only k-rationalizable actions are chosen with positive probability at
any equilibrium, where the order of rationalizability depends monotonically on the scaling factor.
This connection between empirical learning and strategic sophistication arises directly from the
fact that higher payoffs induce longer decision times, leading players to sample sufficiently to
learn and choose only k-rationalizable actions.

We then turn to binary action games and examine how relative payoffs influence the joint dis-
tribution of choices and decision time. We establish comparative statics results for sequential
sampling. First, increasing the payoffs to a given action leads to that action being chosen more
often and faster and the other less often and slower, a finding that generalizes beyond two-action
settings. Second, an increase in the underlying probability that an action is optimal leads to an
analogous result. These results allow us to prove two behavioral implications of sequential sam-
pling equilibrium: that the frequency with which an action is chosen increases in its payoffs, and
that the opponent chooses the best response to that action more often and faster. If the former
corresponds to a well-documented deviation from Nash equilibrium in experimental literature
(e.g. Goeree and Holt, 2001), the latter provides a novel prediction on how time relates to choice,
which we find to be borne out by existing experimental evidence.

Sequential sampling equilibrium also has implications for players’ equilibrium beliefs. Experi-
mental evidence has suggested that beliefs about others’ behavior are often biased (Costa-Gomes
and Weizsäcker, 2008), appear stochastic (Friedman and Ward, 2022), and depend on own in-
centives even when others’ behavior is held fixed (Esteban-Casanelles and Gonçalves, 2022). All
these patterns are implied by sequential sampling, where beliefs upon stopping will typically be
biased toward the prior, stochastic, as they depend on the realized observations players sample,
and payoff-dependent, given these affect when players stop sampling. To go beyond these gen-
eral properties, we consider the case of Beta-distributed priors and prove that sequential sampling
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equilibrium provides a foundation for time-revealed indifference observed in binary action games.
Specifically, we show that the longer the decision time, the closer is the player to being indifferent
between taking either action—a game-theoretic counterpart to Fudenberg et al. (2018). Further-
more, we uncover monotone comparative statics on how beliefs respond to payoff changes. In
a nutshell—and recalling that stopping beliefs are stochastic—when payoffs to a player’s action
increase, the opponent’s equilibrium beliefs shift (in a first-order stochastic dominance) toward
assigning a higher probability to that action being chosen.

Sequential sampling also provides a new rationale for Nash equilibrium, based on costly informa-
tion acquisition. While optimal stopping implies that conditional on stopping observations are
neither independent nor identically distributed, it is possible to use martingale theory to show
that sequential sampling equilibria nevertheless converge to Nash equilibria. However, not all
Nash equilibria can be reached through this approach: those involving weakly dominated ac-
tions cannot, while pure strategy Nash equilibria that don’t involve such actions can.

We also explain how this solution concept can be seen as a steady state of a dynamic process.
Specifically, we show how sequential sampling equilibria coincide with the steady states of the
distribution of play of short-lived players who sequentially sample from data on past play, and
obtain global asymptotic convergence results for a generic class of 2×2 games. This parallels the
role of Nash equilibria in scenarios where these short-lived players have frictionless access to the
entirety of past data (Fudenberg and Kreps, 1993; Fudenberg and Levine, 1998).

Finally, we conclude with a discussion of variations to the model, including extensions to incom-
plete information games and more general information structures. It is straightforward to adjust
the solution concept to Bayesian games by having samples include information on the realized
actions as well as the state. This can be interpreted as making inferences about a specific context
by also relying on information about behavior in similar settings. An analogous result to that of
convergence to Nash equilibrium ensues: limit points of Bayesian sequential sampling equilibria
as sampling costs vanish are Bayesian Nash equilibria. Furthermore, we provide an extension to
more general information structures, accommodating situations in which recollections are noisy,
some players’ signals are silent about a subset of their opponents, or where in general players’
ability to distinguish between opponents’ actions or types is limited. In the latter case, indistin-
guishable action profiles constitute an analogy class and it is shown that limit points of a sequence
of equilibria with vanishing costs are analogy-based expectations equilibria (Jehiel, 2005; Jehiel
and Koessler, 2008).
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To summarize, sequential sampling equilibrium constitutes a flexible equilibrium framework for
analyzing strategic interaction. It provides a rationale for standard solution concepts, accounts
for several behavioral patterns that have been documented in experiments, and makes novel
predictions not just regarding choices that individuals make in strategic settings, but for timed-
stochastic choice data, the joint distribution of choices, beliefs, and decision times.

1.1. Related Literature
This paper is related to two broad literatures: sequential sampling and information acquisition
in games.

Sequential Sampling. The study of optimal sequential sampling can be traced back to the sem-
inal works of Wald (1947) and Arrow et al. (1949). Sequential sampling has since been used
as a modeling device in cognitive psychology and neuroscience to ground a relation between
choice and decision time,5 and, in particular, to model choice based on memory retrieval (Gold
and Shadlen, 2007; Shadlen and Shohamy, 2016; Duncan and Shohamy, 2020; Biderman et al.,
2020). Alaoui and Penta (2022) provide an axiomatic foundation of sequential sampling as a rep-
resentation of iterative of reasoning. Fudenberg et al. (2018) consider a binary-action problem
in which a decision-maker sequentially acquires information the payoff difference. They show
that at longer stopping times, the agent is closer to being indifferent between the two actions.6

Alós-Ferrer et al. (2021) examine the general relation between time-revealed indifference and
stochastic choice primitives.

The individual decision-making framework of sequential sampling motivated the experimental
study of decision times in games. This led to establishing a number of regularities, such as a
positive association between decision times and the strategic sophistication of actions chosen—as
given by level-kmodel (Nagel, 1995; Stahl andWilson, 1995) or the highest level of k-rationalizability—
in dominance-solvable games (see e.g. Agranov et al., 2015; Rubinstein, 2016; Alaoui et al., 2020;
Alós-Ferrer and Bruckenmaier, 2021; Gill and Prowse, 2023), and that scaling up incentive lev-
els causally increases decision times and leads to more sophisticated play (Esteban-Casanelles
and Gonçalves, 2022). Additionally, as in individual decision-making, response times also reveal
5The classic reference is Ratcliff (1978). See Ratcliff et al. (2016) and Forstmann et al. (2016) for a review of the
literature and Krajbich et al. (2012); Spiliopoulos and Ortmann (2018); Clithero (2018b); Chiong et al. (2023) for
economic applications.

6A related literature on optimal sequential information acquisition studies the dynamic choice of information, be it
deciding about its intensity (Moscarini and Smith, 1963), selecting across sources (Che and Mierendorff, 2019; Liang
et al., 2022), or choosing it in a fully flexible manner (Steiner et al., 2017; Zhong, 2022).
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indifference in global games (Schotter and Trevino, 2021; Frydman and Nunnari, 2023).

Sequential sampling equilibrium adopts sequential sampling to model belief formation in strate-
gic settings, providing a relation between stopping time, beliefs, and choices. It contributes to this
theoretical literature with novel results in problems with multiple available actions: comparative
statics results on how choices and stopping time relate to payoffs in general decision-problems
with arbitrary payoff correlation across actions. It rationalizes the relation between incentives,
decision times, and strategic sophistication of choices that has been documented in the experi-
mental literature, Further, in the binary-action case that has been the focus of much of the lit-
erature, our model relates the true data generating process to the distribution of choices, stop-
ping times, and posterior beliefs, and obtain a time-revealed indifference prediction in a tractable
discrete-time environment, which we show bears out in Friedman and Ward’s (2022) data.

Information Acquisition in Games. There is a growing literature on equilibrium solution
concepts featuring information acquisition. Osborne and Rubinstein (2003) suppose each player
observes a fixed number of samples from their opponents’ equilibrium distribution of actions, and
the mapping from samples to actions is exogenously specified. Salant and Cherry (2020) study
a special case of this solution concept in mean-field games with binary actions, while keeping
the sampling procedure exogeneous: players employ unbiased estimators and best-respond to
the obtained estimate.7 Osborne and Rubinstein (1998) examine a similar notion of equilibrium,
where players receive a fixed number of samples from the payoffs of each of their actions and
choose the action with the highest average payoff in the sample. More broadly, these correspond
to a form of self-confirming equilibrium (Fudenberg and Levine, 1993; Battigalli et al., 1992) in
which the feedback function is fixed.

In contrast to these, sequential sampling equilibrium (1) endogenizes the sampling and (2) adds
a time dimension via its sequential nature, enabling results regarding the joint distribution of
stopping time and choices that cannot be capturedwith exogenous sampling. If the latter provides
the basis for the time-revealed indifference, the former grounds the relationship between payoffs,
decision times, and the level of strategic sophistication (in the sense of k-rationalizability) of the
actions chosen in equilibrium.

The literature also studied solution concepts with costly information acquisition. Yang (2015)
examines a coordination game in which players acquire flexible but costly information about an
7Related are solution concepts with noisy but unbiased beliefs, e.g. Friedman and Mezzetti (2005); Friedman (2022).
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exogenous payoff-relevant parameter. As in much of the rational inattention literature (Sims,
2003; Matějka and McKay, 2015), the cost of information is given by prior entropy reduction.
Matějka and McKay (2012) and Martin (2017) study pricing games with a similar approach. Denti
(2023) allows for players to obtain correlated information under general information cost (as in
Caplin and Dean, 2015). Hébert and La'O (2023) study this solution concept in mean-field games.

Our paper provides the first solution concept in which the cost of information acquisition is ex-
perimental (Denti et al., 2022), with information acquisition corresponding to costly sequentially
sampling from an information structure. While the sequential information acquisition can be
studied from a static, ex-ante perspective (Morris and Strack, 2019; Bloedel and Zhong, 2021;
Hébert and Woodford, 2023), there are two conceptual features distinguishing sequential sam-
pling equilibrium—beyond, of course, results specific to stopping time. First, in these papers
players hold beliefs and can learn about their opponents’ action realizations. Second, players’
equilibrium beliefs are correct, and so, absent uncertainty about exogenous parameters, equilib-
ria correspond to Nash equilibria of the underlying normal-form game.

In our framework, players are uncertain—neither correct or incorrect—about the prevailing distri-
bution of actions of their opponents. While actions yet to be taken are not learnable, a prevailing
stable distribution of opponents’ actions is. Further, if the choice of an information structure by
our players bears a cost proportional to the expected stopping time, our analysis speaks to the
joint distribution of stopping times and choices as determined in equilibrium—noting that the
equilibrium stopping time is distributed not by the measure induced by players’ prior beliefs, but
by that arising from the equilibrium distribution of their opponents’ actions (which has measure
zero according to their prior).

Finally, we comment on the relation to thework on learningwithmisspecification, chiefly Esponda
and Pouzo’s (2016) Berk-Nash equilibrium. This solution concept allows for general forms of mis-
specification of the players’ prior beliefs and is not restricted to either normal-form or complete
information games. There, players best-respond to their equilibrium beliefs, those in the support
of players’ priors that minimize the Kullback–Leibler divergence to equilibrium gameplay, which
can be taken as arising as the limit case of Bayesian learning with potentially misspecified priors
(see Fudenberg et al., 2021).
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2. Sequential Sampling Equilibrium

2.1. Setup
Preliminaries. Let Γ = 〈I, A,u〉 denote a normal-form game, where I denotes a finite set of
players or roles, with generic elements i, j and where −i denotes I \ i; A :=×i∈I A i, where A i is
i’s finite set of feasible actions; and u := (ui)i∈I , with ui : A i ×∆(A−i) → R denoting player i’s
payoff function, where ui is continuous, ∆(A−i) being endowed with the Euclidean norm.8 We
extend ui to the space of probability distributions over actions with ui(σi,σ−i)= Eσi [ui(ai,σ−i)],
where Eσi [·] corresponds to the expectation taken with respect to σi. While we focus throughout
on normal-form games, having payoffs directly depend on opponents’ distribution of actions will
render proofs readily adaptable to Bayesian games, a setting to which our framework extends
naturally as discussed in Section 6.

Beliefs. In contrast to other solution concepts, each player i is uncertain about others’ true dis-
tribution of actions, σ−i. While this implies uncertainty about the actions that others ultimately
take, a−i, the main conceptual difference is that, if others’ actions are only observable after these
are taken, players may still reason and learn about the prevailing stable action distribution prior
to others choosing an action—e.g. the likelihood a restaurant is too crowded, the probability that
others abstain in an election, or the distribution of prices of a product across different platforms.
Such uncertainty captures the players’ limited experience and imperfect memory. Expressing
this uncertainty, each player i holds beliefs about σ−i, given by a Borel probability measure
µi ∈∆(∆(A−i)), where∆(∆(A−i)) is endowedwith the topology of weak∗ convergence, metricized
by Lévy-Prokhorov metric ∥ · ∥LP . We require player i’s beliefs to have as support, supp(µi), the
set of all distributions, allowing for correlation—supp(µi)=∆(A−i)—or the set of all distributions
assuming independence across opponents, in which case beliefs are given by a product measure
µi = × j∈−iµi j , where each µi j is a probability measure on ∆(A j) with full support. Results will
hold in either unless explicitly mentioned.9

Information and Sequential Sampling. We model a player’s costly reasoning about others’
behavior via a sequential sampling stage that takes place prior to choice, as in sequential sampling
models used to describe reasoning in individual decision-making settings (Fudenberg et al., 2018;
8We will use ∥ ·∥p to denote the p-norm and ∥ ·∥∞ for the sup-norm.
9It is also possible to extend this framework to accommodate other cases potentially of interest, e.g. ruling out
opponents play strictly dominated actions; we omit these cases to simplify the presentation.
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Forstmann et al., 2016). That is, prior to making a choice, player i can acquire signals about the
unknown distribution σ−i in a sequential and costly manner. Sequential sampling then captures
the recollection of past experiences in similar situations (others’ behavior, payoffs to tried out
actions), asking friends, or more general stepwise reasoning processes—see Alaoui and Penta
(2022) for an axiomatic foundation of stepwise reasoning in this guise. Alternatively, it can be
taken in more literal fashion, with players acquiring or parsing through existing data.

A key assumption is that this reasoning is informative about others’ behavior, that is, that each
player i has access to an information structure πi : ∆(A−i) → ∆(Yi), where Yi is a finite signal
space. Throughout the main text, we restrict attention to the case in which these signals are
observations drawn from σ−i, i.e. πi corresponds to the identity. More general signal structures
are considered in Appendix B.

As mentioned, information acquisition is sequential. In other words, prior to taking an action,
player i can sequentially observe signals yi,t and decide when to stop sampling. Players’ stopping
time will be interpreted as their decision time, and thus take a prominent role in our endeavor
to ground the relation between incentives, choices, and decision time in strategic settings. The
sequentiality in sampling marks an important distinction relative to other models of sampling in
games (e.g. Osborne and Rubinstein, 1998, 2003), allowing rich joint distributions of actions and
decision time to emerge, in which particular actions can be associated with lengthier decision
times, and others with shorter.

We will write yt
i = (yi,ℓ)ℓ∈[1.. t] to stand for the sample path up to time t, where [n ..n+ k] =

{n,n+1, ...,n+k} and each realization yi,ℓ is distributed according to σ−i, with the understanding
that y0

i =;. Formally, we denote yi =
{
yi,t

}
t∈N as a stochastic process defined on the probability

space (Ω,F ,P) with Fi denoting the natural filtration of yi. The set of sample paths of length t is
denoted by Y t

i and the set of all finite sample path realizations is denoted by Yi :=⋃
t∈NY t

i . Upon
observing a given sample path up to time t, yt

i , player i updates beliefs about σ−i according to
Bayes’ rule, denoted by µi|yt

i .
10

Sampling Costs. Naturally, sampling is costly, capturing the effort involved in reasoning. For
convenience, wewill throughout assume that player i’s cost of each observation is given by ci > 0.
It is straightforward to adjust themodel in order to accommodate costs that depend on the number
10Note that µi induces a measure on ∆(A−i)×Yi .
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of observations, insofar as they are eventually bounded away from zero from below,11 which, for
all purposes, subsumes cases in which there is an upper bound on the number of observations.

Extended Games. An extended game G is then a tuple comprising an underlying normal-form
game Γ, each players’ prior beliefs µ= (µi)i∈I , and sampling costs c = (ci)i∈I .

2.2. Equilibrium
Having introduced all the primitives of the model, we now turn to defining equilibrium.

Choice. Given a belief µ′
i ∈ ∆(∆(A−i)), player i upon stopping sampling chooses an action

in order to maximize their expected utility. We denote the player’s maximized utility by vi :

∆(∆(A−i))→R

vi(µ′
i) := max

σi∈∆(A i)
Eσi [Eµ′i [ui(ai,σ−i)]],

where Eσi [Eµ′i [ui(ai,σ−i)]]=
∫

A i

∫
∆(A−i) ui(ai,a−i)dµ′

i(σ−i)dσi(ai). Wewriteσ∗
i :∆(A−i)→∆(A i)

to denote a selection of optimal choices given beliefs, σ∗
i (µ′

i) ∈ argmaxσi∈∆(A i)Eµi [ui(σi,σ′
−i)].

Optimal Stopping. Player i samples optimally in order to maximize expected payoffs. That is,
each player i faces an optimal stopping problem: based on the expected value of future reasoning,
decide whether to stop and make a choice or obtain another signal. Formally, player i chooses
a stopping time ti in the set Ti of all stopping times taking values in N0 ∪ {∞} and adapted with
respect to natural filtration associated to yi.

Given a prior µi ∈∆(∆(A−i)), player i’s value function Vi :∆(∆(A−i))→R can be written as

Vi(µi) := sup
ti∈Ti

Eµi [vi(µi | yti
i )− ci · ti],

where µi | yti
i denotes the player’s posterior belief when, upon stopping according to stopping

time ti, the sample yti
i was observed.

It will be useful to consider the dynamic programming formulation of the optimal stopping prob-
lem, with Vi corresponding to a fixed point of an operator Bi : Cb(∆(∆(A−i)))→ Cb(∆(∆(A−i))),

Bi(Ṽi)(µ′
i)=max{vi(µ′

i),Eµ′i [Ṽi(µ′
i | y)]− ci},

11 Formally: there is some N and ci > 0 such that player i’s cost for any observation following the N-th is greater
than ci .
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which will be equivalent for our purposes. This lends our value function a clear interpretation:

Vi(µ′
i)︸ ︷︷ ︸

value at belief µ′i

=max{ vi(µ′
i)︸ ︷︷ ︸

value of stopping

, Eµi [Vi(µ′
i | yi)]− ci︸ ︷︷ ︸

expected value of continuing sampling

}.

We focus on the earliest optimal stopping time

τi(ω) :=min{t ∈N0 |Vi(µ′
i | yt

i (ω))= vi(µ′
i | yt

i (ω))},

where its optimality follows by standard arguments (Ferguson, 2008, Ch. 3, Theorem 3); while
omitted, we note the dependence of τi on the prior µ′

i.

For ease of reference, we summarize properties of optimal sequential sampling in this proposition:

Proposition 1. The following properties hold: (1) vi and Vi are bounded, convex, and uniformly

continuous. (2) For any prior µi, player i’s optimal stopping time is finite µi-a.s. and satisfies Pµi (τ>
T)≤ 2∥ui∥∞/ciT .

This and the remaining omitted proofs are in Appendix A.

Equilibrium Definition. We now close the model by considering equilibrium behavior. Play-
ers’ strategic uncertainty about others’ action distribution motivates their sequential sampling
behavior. The randomness inherent to sampling entails randomness in players’ optimal actions
given their posterior beliefs. Equilibrium is then a fixed point, a consistency condition based on
the premise that each player’s signals are informative about others’ distribution of actions.

Formally, each player acquires information on their opponents’ action distribution and their opti-
mal stopping policy, τi, determines the sequences of signals following which they optimally stop
at take an action:

Y
τi
i :=

{
yt

i ∈Yi : Vi(µi | yt
i )= vi(µi | yt

i ) and ∀0≤ ℓ< t,Vi(µi | yℓi )> vi(µi | yℓi )
}

.

Different opponent action distributions σ−i induce different distributions over the signals ac-
quired yτi

i . Since different sequences of signals yτi
i induce different posteriors µi | yτi

i at which
different actions ai may be optimal, sequential sampling implies a mapping from opponents’
action distributions to the player’s distribution of actions,

Eσ−i [σ
∗
i (µi | yτi

i )]= ∑
yt

i∈Y
τi
i︸ ︷︷ ︸

set of stopping
sequences

∏
ℓ∈[1.. t]

σ−i(yi,ℓ)︸ ︷︷ ︸
probability
observing yt

i

σ∗
i (µi | yt

i )︸ ︷︷ ︸
best response

at posterior µi |yt
i

That is, the probability of player i taking action ai is given by the probability of taking such
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an action once player i after observing yt
i , σ

∗
i (µi | yt

i ), considering every sequence of signals yt
i

following which player i optimally stops, yt
i ∈Y

τi
i , and weighting it by the probability of its oc-

currence. The probability that a sequence of signals yt
i is observed—— that is, the true probability

of optimally stopping following yt
i , Pσ−i (yτi

i = yt
i )—is then given by 1yt

i∈Y
τi
i

∏
ℓ∈[1.. t]σ−i(yi,ℓ), as

each observation corresponds to an action profile yi,ℓ ∈ A−i, sampled independently from i’s
opponents’ action distribution, σ−i.

Equilibrium then follows as a consistency condition between players’ action distributions:

Definition 1. A sequential sampling equilibrium of an extended game G = 〈Γ,µ, c〉 is a profile of
action distributions σ such that, for every i, σi = Eσ−i [σ

∗
i (µi | yτi

i )], where τi is player i’s earliest
optimal stopping time and σ∗

i (µ′
i) is optimal given belief µ′

i.

Equilibrium Stopping Time. It is important to emphasize that a sequential sampling equilib-
rium implies a novel relationship between actions and time. While a sequential sampling equi-
librium is defined in the space of action distributions, note that, in a given extended game, the
equilibrium distribution of opponents’ actions σ−i completely pins down the joint distribution
of choices and (optimal) stopping time for player i (ai,τi). Such joint distribution is determined
in equilibrium, as it crucially depends on the true (equilibrium) action distribution of player i’s
opponents about which player i is reasoning. Although one could think about cEµi [τi] as a static
cost of information and rephrase our equilibrium notion from a static viewpoint (e.g. Yang, 2015;
Denti, 2023; Hébert and La'O, 2023), a major distinctive feature of this model relative to equi-
librium models of costly information acquisition in games is that it enables one to speak not of
the subjectively expected cost of information acquisition, but of the joint distribution of realized
actions and time. As also mentioned earlier, a second difference is that uncertainty here refers
to distribution of actions, and therefore it does not require—but can accommodate—exogenous
sources of uncertainty.

Interpretation. Sequential sampling equilibrium can be interpreted as positing that, prior to
taking an action, players reason through others’ behavior to better ground their choices. In this
sense, players’ sequential sampling reflects an underlying introspective process whereby players
reason about how others may act by reaching back in their memory and past experiences. This
interpretation is motivated by literature in cognitive science (Shadlen and Shohamy, 2016), which
has made use of sequential sampling models to ground the relation between time and choices
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not only in association problems and perceptual tasks,12 but also in domains where choices are
guided by individual preferences (e.g. Clithero, 2018a), with patterns being consistent across these
different domains (Smith and Krajbich, 2021). Recent literature provided neurological evidence of
memory guiding preference-based choice, conforming with sampling frommemory (see Bakkour
et al., 2018; Duncan and Shohamy, 2020; Biderman et al., 2020; Biderman and Shohamy, 2021).

A second, complementary and more literal, interpretation of sequential sampling is to see it as
acquiring hard information—such as data, experts’ opinions, or reviews. For instance, a seller do-
ing market research to better price its product, consumers parsing reviews on a product’s quality,
voters learning about candidates’ platforms through their statements about different issues, or
infrequent bidders in online auctions looking at data from other past auctions to reason how to
bid.

At the heart of our model is the assumption that sampling is informative about others’ behavior,
so as to render it valuable. Equilibrium delivers this consistency by positing stationarity of the
environment—Section 5 illustrates how it coincides with steady states of a particular dynamic
process. Further, it also allows us to obtain comparative statics predictions on how payoffs affect
players’ choices both by changing the trade-offs in players’ information acquisition decisions and
the signal realizations. Naturally, stationarity of the environment is a strong assumption that may
be unwarranted in situations where non-equilibrium is more apt to describe behavior—see Alaoui
and Penta (2016) for one such model.

In order to obtain sharper predictions, we will focus on a simple form of sequential sampling.
Players’ sampling is then represented in a stylized manner, with signals directly sampled from
the prevailing distribution of actions of opponents. In Section 6 we discuss how sequential sam-
pling equilibrium can be easily extended to richer settings and information structures—e.g. noisy
recollections, inability to learn about some players’, or allowing signals about others’ behavior
(or types) in one setting to inform players in the situation at hand.

Sequential sampling equilibrium also provides a particular way to relax the implicit epistemic
assumption in Nash equilibrium that, in equilibrium, players come to know their opponents’ dis-
tribution of actions. If players’ priors did assign probability one to the same Nash equilibrium of
the underlying game, that Nash equilibrium will coincide with a sequential sampling equilibrium
of the game.13 In our model, however, players are uncertain about the prevailing distribution of
12See Ratcliff (1978) for a pioneering study of the use of sequential sampling models in cognitive sciences and
Forstmann et al. (2016); Ratcliff et al. (2016) for recent review articles.

13As it is implicit in this statement, even though beliefs are degenerate and coincide on the same Nash equilibrium,
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actions, and it is this uncertainty that drives their sequential sampling behavior. Further, it dis-
penses with the assumption of mutual knowledge of the game and of others’ rationality, since all
learning is driven by the procured information and players need not know others’ payoff func-
tions.

Existence. We briefly note that a sequential sampling equilibrium exists in all extended games.

Theorem 1. Every extended game has a sequential sampling equilibrium.

The proof proceeds by verifying that, for every player i, σ−i 7→ bi(σ−i) := Eσ−i [σ
∗
i (µi | yτi

i )] (1)
maps to a well-defined probability distribution of player i’s actions, and (2) such mapping is
continuous. The main difficulty is that, while we know that, by Proposition 1, τi is finite with
probability 1 with respect to the player’s prior (Pµi (τi <∞)= 1), we need player i’s optimal stop-
ping time to be finite with probability 1with respect to the actual distribution of opponents’ actions,
(Pσ−i (τi <∞) = 1), as otherwise bi(σ−i) ∉ ∆(A i). If player i never stops sampling with positive
probability (with respect to the true distribution of opponents’ actions), then bi does not define a
probability distribution over player i’s actions and no equilibrium exists.14 The following lemma
demonstrates that this condition on stopping time is also sufficient to guarantee the desired prop-
erties on bi:

Lemma 1. The following two statements are equivalent: (1) player i’s optimal stopping time is finite

with probability 1 with respect to σ−i, Pσ−i (τi <∞) = 1 for any σ−i ∈∆(A−i); (2) bi(σ−i) ∈∆(A i)

∀σ−i ∈∆(A−i). Moreover, if (1) holds, then bi is also continuous.

The proof can be found in Appendix A. With Lemma 1 in hand, it is then straightforward to show
existence of a sequential sampling equilibrium.

Proof. Given Lemma 1, if, for any σ−i, τi is finite with probability one with respect to σ−i, then
bi is a continuous mapping from ∆(A−i) to ∆(A i), and existence follows from Brouwer’s fixed
point theorem. By assumption, supp(µi)=∆(A−i) and, for any σ−i,

Pσ−i (τi(ω)≤ T)=Pσ−i (
{
ω : inf{t | Eµi,t(ω)[Vi(µi,t(ω)|yi,t+1]−Vi(µi,t(ω))≤ ci}≤ T

}
).

not all best responses need to coincide with that same Nash equilibrium, which explains why there may be multiple
sequential sampling equilibria instead of there being a unique equilibrium coinciding with the Nash equilibrium
players believe to occur. Such non-uniqueness can occur evenwhen the game has a unique Nash equilibrium, echo-
ing Aumann and Brandenburger’s (1995) results on the epistemic characterization of Nash equilibrium, whereby
conjectures—and not choices—are found to coincide with Nash equilibrium.

14We provide an example in Online Appendix D to illustrate the potential non-existence of equilibria when priors
do not have full support.
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As Vi is uniformly continuous, there is δ> 0 such that, ∀µi,µ′
i ∈∆(Pi) satisfying ∥µi −µ′

i∥LP <
δ, |Vi(µi)−Vi(µ′

i)| < c. Since each observation is subjectively iid, by Berk (1966), µi,t weak∗

converges to a Dirac on σ−i, σ−i-a.s., Pσ−i (limt→∞Eµi,t[Vi(µi,t|yi,t+1]−Vi(µi,t)> ci)= 0.

In fact, we can obtain an upper bound on the stopping time by combining uniform continuity of
Vi and the fact that µi uniformly accumulates around the empirical frequency:

Remark 1. For every player i, ∃T i <∞ such that τi ≤ T i, where T i depends on ui, µi, and ci.

This transforms optimal stopping into a finite horizon problem, a useful result that not only sim-
plifies the analysis, but also makes our solution concept amenable to computational applications.

3. Behavioral Implications
In this section, we characterize different behavioral implications of sequential sampling equilib-
rium. First, we explore the relation between stopping time and action sophistication. Then, we
will relate incentives to the joint distribution of choices and stopping time. Finally, we focus on
players’ beliefs and their relation with stopping time.

3.1. Rationality and Sequential Sampling
Existing evidence points toward an association between longer decision times and choices reflect-
ing greater sophistication (e.g. Agranov et al., 2015; Rubinstein, 2016; Alós-Ferrer and Brucken-
maier, 2021), which may express heterogeneity in individual costs of reasoning. However, when
facing higher stakes, decision times increase first-order stochastic dominance sense, and choices
do reflect higher sophistication, as given by their level of rationalizability (Esteban-Casanelles and
Gonçalves, 2022). Existing benchmark models like level-k and cognitive hierarchy (Nagel, 1995;
Camerer et al., 2004) are unable to deliver such comparative statics, since choices are invariant
with respect to incentive levels.15

This section shows how sequential sampling equilibrium can provide a rationale for such an as-
sociation by relating higher incentives, longer decision times, and a lower bound on the level
of rationalizability of action chosen in equilibrium. Further, this establishes a relation between
empirical learning (as given by sequential sampling) and introspective learning (as given by ra-
tionalizability).
15A notable exception is the non-equilibrium model by Alaoui and Penta (2016), which endogenizes level-k via a
cost-benefit analysis. Differently from our model, though, it predicts degenerate stopping times.
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We first observe that, in our context, higher incentives as given by scaling up a player’s payoffs, is
equivalent to scaling down the cost to sampling. Optimal sequential sampling naturally predicts
an inverse relation between sampling cost and stopping time:

Remark 2. For lower sampling costs ci, player i’s optimal stopping time increases in first-order
stochastic dominance with respect to the prior µi and to any true distribution of opponents’
actions σ−i ∈∆(A−i); that is, both Pµi (τi ≤ t) and Pσ−i (τi ≤ t) increase for any t.

Our main result of this section goes further in determining a relation between cost and the level
of sophistication of actions chosen in equilibrium. Let us recall the definition of rationalizable
actions.

Definition 2. An action ai ∈ A i is 1-rationalizable if there is some σ−i ∈ ∆(A−i) such that,
∀σi ∈ ∆(A i), ui(ai,σ−i) ≥ ui(σi,σ−i). An action ai ∈ A i is k-rationalizable, for k ≥ 2, if there
is some σ−i ∈∆(Ak−1

−i ) such that, ∀σi ∈∆(A i), ui(ai,σ−i)≥ ui(σi,σ−i), where Ak−1
−i :=× j ̸=i Ak−1

j

denotes the set of (k−1)-rationalizable action profiles of player i’s opponents. An action ai is
rationalizable if ai ∈∩k∈NAk

i .

For presentation purposes—as implied by the above definition—we focus on a definition of ra-
tionalizability allowing for correlation among opponents’ actions, and require priors to have full
support on∆(A−i). The below result holds as well when considering a definition of rationalizable
actions that requires independence across opponents’ action distributions, provided beliefs also
do not allow for correlation.

We now show that scaling up incentives enough—or, equivalently, for low enough sampling
costs—only k-rationalizable actions are chosen at sequential sampling equilibria:

Theorem 2. For any normal-form game Γ, priors µ, and k ∈ N, there are cost thresholds ck
i > 0

such that, for any extended game G = 〈Γ,µ, c〉 in which ci < ck
i for all i, in any sequential sampling

equilibrium σ of G only k-rationalizable actions are chosen with positive probability.

The result is obtained by combining three observations—the proofs for which can be found in
Appendix A. First, if player i believes that, with high enough probability, their opponents only
choose (k−1)-rationalizable actions, then player i will choose a k-rationalizable action:

Lemma 2. For any k ≥ 2, there are ϵ,δ> 0, such that, if µi(Bδ(∆(Ak−1
−i ))> 1−ϵ, then

argmaxai∈A i
Eµi [ui(ai,σ−i)]⊆ Ak

i .

Second, that if player i’s opponents do indeed only choose (k−1)-rationalizable actions, then
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player i’s beliefs uniformly accumulate on the event that opponents only choose (k−1)-rationalizable
actions:

Lemma 3. For any µi ∈∆(∆(A−i)) with full support, and all ϵ,δ > 0, there is t such that, for any

sequence of observations yt
i for which yi,ℓ ∈ Ak−1

−i for ℓ ∈ [1 .. t], µi | yt
i (Bδ(∆(Ak−1

−i )))> 1−ϵ.

And third, that, when not all of player i’s actions are rationalizable, it suffices that sampling costs
are low enough to ensure that the player acquires a minimum number of signals:

Lemma 4. Suppose that there is no action ai that is a best response to all distribution of opponents’

actions σ−i ∈∆(A−i). Then, for any T ∈N0 and any full support prior µi ∈∆(A−i), there is ci > 0

such that for any sampling cost ci < ci, the associated earliest optimal stopping time τi ≥ T +1.

The proof of Theorem 2 then proceeds easily:

Proof. The proof follows an induction argument. First, observe that no player will choose actions
that are not 1-rationalizable. Now, for k ≥ 1, assume that players choose only (k−1)-rationalizable
actions with positive probability. From Lemma 3, for any δ,ϵ > 0 there is a T such that, for all
t ≥ T , all i ∈ I , and any yt

i ∈ Ak−1
−i , µi,t(Bδ(∆(Ak−1

−i ))) ≥ µi,t(Bδ(δyt
i
)) > 1− ϵ. By Lemma 2, this

implies that if all players sample for at least T periods, they will only choose k-rationalizable
actions with positive probability. Lemma 4 ensures that we can find ck > 0 such that, if ci ≤ ck

∀i, all players sample at least T periods, i.e. that each player’s earliest optimal stopping time is
bounded below by T , τi ≥ T . This concludes the proof.

Remark 3. It is possible to generalize the result to classes of priors that satisfy a condition akin
to a lower bound on density:

Definition 3 (Diaconis and Freedman 1990). Let φ : R++ → R++. The set of φ-positive distribu-
tions on ∆(A−i) is given by Mi(φ) := {µi ∈∆(∆(A−i)) | infσ−i∈∆(A−i)µi(Bϵ(σ−i))≥φ(ϵ), ∀ϵ> 0}.

Since it is possible to obtain a uniform rate of accumulation around the empirical mean for any
prior µi ∈ Mi(φ) that depends only on φ, we can then extend Theorem 2 so that the same cost
thresholds holds for all φ-positive priors µi. Further, these cost thresholds ck

i can be made tight
and non-increasing in k by considering all priors within such class.

In short, Theorem 2 uncovers a relationship between sampling costs and degree of sophistication
of equilibrium choices. Since scaling up payoffs is tantamount to scaling down costs, providing—
via sequential sampling—a rationale for the link from incentive levels to action sophistication,
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beliefs about opponents, and decision times documenetd in dominance-solvable games e.g. in
Esteban-Casanelles and Gonçalves (2022).

3.2. Comparative Statics in Binary Action Games
Binary Action Games. In this section we provide comparative statics results for binary actions
games: normal-form games Γ= 〈I, A,u〉 with two players, |I| = 2, and such that each player i ∈ I

has two actions A i = {0,1} and ui(1,σ−i)−ui(0,σ−i) is strictly monotone and continuous in σ−i,
the probability that i’s opponent chooses action 1.16 Consequently, we identify µi ∈ ∆(∆(A−i))

with a distribution on the unit interval. An extended binary action game G is an extended game
for which Γ is a binary action game.

Actions and Stopping Time. Our object of interest will be the probability (according to σ−i)
that player i stops before time t and, upon stopping, action ai is optimal, that is,

Pσ j (ai ∈ A∗
i (µi | yτi

i ) and τi ≤ t),

where A∗
i (µ′

i) := argmaxai∈A i
Eµ′i

[ui(ai,σ′
−i)] denotes the set of optimal choices at a given belief

µ′
i. Our main result characterizes how the joint distribution of player i’s choices and their stop-

ping times changes along to three dimensions: (1) the player’s payoffs, ui, (2) their beliefs, µi,
and (3) the true (unknown) distribution of their opponent’s actions, σ−i, taken as exogenous.

Ordering Payoffs and Beliefs. Let us introduce a partial order on player i’s utility functions:

Definition 4. Let ui,u′
i : A i×∆(A−i)→R. u′

i is said to has higher incentives to action ai than ui,
u′

i ≥ai ui, if and only if there is g :∆(A−i)→R+ such that u′
i(a

′
i,σ

′
−i)= ui(a′

i,σ
′
−i)+1a′

i=ai g(σ−i).

Beliefs are ordered according to a generalized version of the monotone likelihood ratio property
(cf. Lehrer and Wang, 2020):

Definition 5. Let µi,µ′
i ∈ ∆([0,1]). µ′

i is said to strongly stochastic dominate µi, µ′
i ≥SSD µi, if

µ′
i | yt

i first-order stochastically dominates µi | yt
i for any yt

i ∈Yi.

Note that, when µi and µ′
i are mutually absolutely continuous, ≥SSD corresponds to the mono-

tone likelihood ratio property, i.e. dµ′
i/dµi is increasing µ′

i-a.e.
16Monotonicity in σ−i is automatically satisfied when ui(ai,σ−i)= Eσ−i [ui(ai,a−i)]. We require strict monotonicity
to prevent the case in which players are always indifferent between both actions (ui(1,σ−i) = ui(0,σ−i), ∀σ−i),
which is a trivial case. Since we will allude to extensions that may require non-linearity in σ−i , we impose only
minimal conditions on payoffs.
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MonotoneComparative Statics. The next result characterizes the behavior induced by optimal
sequential information acquisition taking σ−i are exogenous:

Theorem 3. Let G be an extended binary action game and let ai ∈ argmaxa′
i∈A i

ui(a′
i,1). Then,

Pσ−i (ai ∈ A∗
i (µi | yτi

i ) and τi ≤ t) increases (i) in ui with respect to ≥ai , (ii) in µi with respect ≥SSD ,

and (iii) in σ−i. Moreover, it is C ∞ in σ−i.

Let us discuss the intuition behind the theorem (the proof is deferred to the Appendix A).

Claim (i) shows that increasing the payoff associated to action ai, u′
i ≥ai ui, makes the player

not only more likely to take that action under the true distribution of actions of the opponent,
but to take it faster and to choose the other action less often and slower. While an increase in
payoffs does increase the value of sampling at some posterior beliefs—which could lead the player
to learn more about the true σ−i and find out that perhaps action ai is not optimal after all—this
additional information acquisition occurs only when before the player was stopping and taking
an action other than ai. In other words, player i requires now less information to be convinced
to stop and take action ai and more information to stop and choose another action. This result
is not particular to binary action games: claim (i) is shown for general settings with arbitrary
finitely many actions and general payoff functions.17

Claim (ii) can be interpreted as stating that player i is more likely to stop earlier and take action
ai the greater the probability their prior assigns to action ai being optimal. The main difficulty
is again to show that this seemingly tautological statement holds with respect to the actual, un-
known, distribution of the opponent’s actions; importantly, note the claim does not depend on
whether or how correct player i’s beliefs are. Such monotonicity in beliefs allows one to make
predictions on how behavior changes with, for instance, the provision of information that shifts
beliefs in the stochastic dominance order (e.g. µi|1≥SSD µi|0).
Finally, the argument for why claim (iii) should hold is straightforward: higher σ−i means that
player i is more likely to observe higher signals and therefore becoming convinced that action ai

is the better alternative. The proof follows from claim (ii) and an induction argument. The fact
that the probability of action ai being optimal when stopping before time t is a polynomial with
respect to σ−i implies the claim on differentiability.

Theorem 3 provides comparative statics on the optimality of a given action, but leaves open the
possibility that more than one action is optimal. The next lemma closes this gap by showing that,
17See Proposition 7 in the Appendix A.
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a δM , 0 0 , 1
b 0 , γC 1 , 0

Figure 1: Generalized Matching Pennies
Note: δM ,γC > 0.

in binary action games, a player is never indifferent between the two actions at any belief held
upon stopping, provided the player samples at least once or is not indifferent under the prior µi.

Lemma 5. Let G be an extended binary action game. Then, for any player i, A∗
i (µi | yτi

i ) is a

singleton or τi = 0. Moreover, if τi > 0, A∗
i (µi | yτi

i )= argmaxai∈A i
ui(ai, yi,τi ).

The reasoning underlying the proof is simple. Without loss of generality, assume that player i’s
best-response to a−i is to choose ai = a−i. Suppose that player i stops sampling after observing a
0-valued signal leaving player i indifferent between the two actions (the argument is symmetric
if the last signal is 1-valued). Then, before sampling the last observation, action 1 was already
optimal under player i’s prior, as observing a 0-valued observation induces a lower belief mean.
Moreover, if the last observation had instead realized to be 1-valued, player i would still want to
choose action 1. This implies that if player i stops sampling when indifferent between the two
actions, whichever action was optimal before taking the last signal is still optimal regardless of
the realization of the signal. Therefore, given that the player will not sample any further, the last
signal has no informational value. As the signal is costly, it is suboptimal to take it.

Applications. One immediate implication of Theorem 3 and Lemma 5 is in establishing a strong
connection between uniqueness of sequential sampling equilibrium in an extended game and
uniqueness of a Nash equilibrium of the underlying binary action game:

Proposition 2. A binary action game Γ has a unique Nash equilibrium if and only if any extended

game G = 〈Γ,µ, c〉 in which players with no weakly dominant actions sample at least once there is a

unique sequential sampling equilibrium.

An analogous result holds when, in symmetric extended binary action games (same payoff func-
tions, same prior, same sampling cost), one restricts to symmetric Nash equilibria and symmetric
sequential sampling equilibria. While uniqueness of a Nash equilibrium implies uniqueness of a
sequential sampling equilibrium, it is not the case that the two coincide.
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Awell-known and counter-intuitive prediction of Nash equilibriumpertains to generalizedmatch-
ing pennies, that is, 2×2 games with a unique Nash equilibrium in fully mixed strategies, whose
structure is illustrated in Figure 1. When the payoffs to action ai of player i increase, Nash equi-
librium predicts that the probability with which action ai is chosen remains the same and it is,
instead, the opponent’s mixed strategy that adjusts to make player i indifferent between choosing
any of the two actions—what one could call the opponent-payoff choice effect. However, experi-
mental evidence shows that increasing player i’s payoffs to an action leads that player to choose
that action more often, an own-payoff choice effect.18 This motivated the emergence of different
models, one of the most successful of which quantal response equilibrium (McKelvey and Palfrey,
1995), which directly embeds monotonicity of choices with respect to payoffs in the assumptions
for players’ behavior (Goeree et al., 2005).

Sequential sampling equilibrium not only rationalizes this empirical regularity via comparative
statics pertaining to behavior induced by optimal information acquisition, it delivers novel behav-
ior implications regarding stopping times. Increasing player i’s payoffs to action ai, (1) increases
the equilibrium probability that player i chooses action ai, and (2) leads their opponent, player
j, in equilibrium, choosing the best response to action ai more often and faster, and their other
action less often and slower, in the sense of Theorem 3. If the first observation states sequential
sampling equilibrium predicts the own-payoff choice effect,19 the second uncovers an entirely
novel prediction relating equilibrium choices and stopping time. Both follow directly from com-
bining Proposition 2, Theorem 3, and Lemma 5.

Supporting Evidence. To investigate whether these predictions find support in existing data,
we rely on experimental data generously made available by Friedman and Ward (2022) who col-
lected data on choices and decision times for six different generalized matching pennies games.
The goal of this exercise is not to fit data or claim that sequential sampling equilibrium perfectly
describes subjects’ behavior or that it does so better than other existing models, but rather to
present suggestive evidence supporting its novel behavioral implications. No feedback or infor-
mation was provided throughout the experiment; details on the experiment, the data, and further
analysis can be found in Appendix C.
18This finding has been replicated several times, namely by Ochs (1995), McKelvey et al. (2000) and Goeree and Holt
(2001).

19A similar result holds in mymodel with respect to symmetric anti-coordination (extended) games. In such case, the
unique symmetric sequential sampling equilibrium exhibits the own-payoff effect under the same conditions as in
generalized matching pennies. This matches gameplay patterns documented in experimental settings by Chierchia
et al. (2018) in the context of symmetric two-player anti-coordination games.
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Figure 2: Opponent-Payoff Time Effect

Notes: The figure compares choices and decision times in generalized matching pennies games as given in
Figure 1, for γC = 1 (and scaled by 20). The data is from Friedman and Ward (2022). The panels exhibit
the frequency with which subjects in the player C’s role take a given action (a in panel (a); b in panel
(b)) before time t (in seconds). Different lines correspond to games in which the player M has different
payoffs to action a. This figure uses only choice data for instances where beliefs were not elicited. The
same patterns are present when beliefs are elicited. See Appendix C for further details on the data.

As shown in Figure 2, if one is to interpret stopping time as a proxy for decision time, the data
supports our predictions: when increasing δM subjects in the Clasher’s role do tend to choose
action b not only more often but also faster. Moreover, they choose action a less often and slower.

3.3. Time-Revealed Preference Intensity
In this section we characterize how stopping time relates to players’ posterior beliefs by consid-
ering a general family of priors in binary action games. For this section, we restrict attention
to games in which payoffs are linear in the opponent’s distribution of actions, i.e. ui(ai,σ−i) =
Eσ−i [ui(ai,a−i)].

Beta Beliefs. For tractability, we consider priors that are linear in new information in a manner
that mimics Bayesian updating for Gaussian priors:

Definition 6. A prior µi is said to be linear in the accumulated information if it is non-degenerate
and there are constants at,bt ∈ R such that for any yt

i ∈Yi the posterior mean satisfies Eµi [σ−i |
yt

i ]= at
∑t
ℓ=1 yt

i,ℓ+bt.
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This property, together with the fact that beliefs are a martingale and some algebraic manipula-
tion, allows us to write the posterior mean as a convex combination of the prior mean and the
empirical mean of the accumulated information, Eµi [σ−i | yt

i ]=αt/t ·∑t
ℓ=1 yt

i,ℓ+ (1−αt) ·Eµi [σ−i],
where αt/t = 1/((1−α1)/α1 + t) ∈ (0,1). This is extremely convenient as, by linearity of expected
utility, one can then analyze optimal stopping just relying on the belief mean and the number
of samples. In fact, as shown by Diaconis and Ylvisaker (1979, Theorem 5), identifies a specific
parametric class of priors: a prior µi is linear in the accumulated information if and only if it is a
Beta distribution.

Collapsing Boundaries. When beliefs are linear in the accumulated information, we have the
following characterization of the set of beliefs at which player i optimally stops:

Proposition 3. Let Γ be a binary action game. Suppose that there is σ̃−i ∈ ∆(A−i) such that

ui(1, σ̃−i) = ui(0, σ̃−i). For any ci > 0, there are continuous functions σ−i,σ−i : R++ → [0,1] such

for any Beta distributed prior µi with parameters (α,β) player i does not optimally stop at µi if and

only if Eµi [σ−i] ∈ (σ−i(α+β),σ−i(α+β)). Furthermore, σ−i is decreasing and σ−i is increasing, and

∃Ti such that ∀t ≥ Ti σ−i(t)=σ−i(t)= σ̃−i.

The proof of the result is in Appendix A.

Proposition 3 shows that when beliefs are linear in accumulated information, it is sufficient to
consider the posterior mean to characterize the beliefs at which player i continues sampling at
any given moment as is illustrated in Figure 3. Note that if µi is a Beta distribution with parame-
ters summing to t, then µi | yi has parameters summing to t+1. The continuation region is then
characterized by an upper and lower threshold that delimit a decreasing interval that “collapses”
to a single point: the distribution at which player i is indifferent between either action. This
translates to our setting what is commonly known in the neuroscience literature as “collapsing
boundaries”.20

One can then interpret the stopping time as an indicator of the intensity of player i’s preference
for one action over another: player i samples for longer if and only if the player is sufficiently
close to being indifferent between the two alternatives, a phenomenon that resembles existing ex-
perimental evidence in individual decision-making (e.g. Konovalov and Krajbich, 2019). In other
words, Proposition 3 entails a behavior marker in the form of time-revealed preference intensity,
20See Hawkins et al. (2015) for a discussion on the evidence of collapsing boundaries and Bhui (2019) for supporting
experimental evidence in an environment in which, as in our model, there is uncertainty about the difference in
the binary actions’ expected payoffs.
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Figure 3: Stopping Regions for Beta Priors

Notes: The figure exhibits the continuation region (shaded area) and the stopping thresholds (darker blue
lines) for posterior means at which player i with a Beta stops. The figure also illustrates the possible
realizations of the sampling process for a player with a uniform prior (Beta(1,1)), with the posterior means
indicated by circles.

akin to results in Alós-Ferrer et al. (2021).

When the absolute difference in the expected payoffs is known—the case where the prior’s sup-
port is a doubleton—the stopping region is characterized by fixed bounds in terms of the posterior
means as shown by Arrow et al. (1949). In contrast, when there is richer uncertainty about the
difference in expected payoffs, as when the prior is given by a Beta distribution, the stopping
region is characterized by bounds that collapse to the posterior mean that makes the individual
indifferent between the two alternatives. A clear parallel emerges between our setup and that in
Fudenberg et al. (2018), where the individual infers the difference in payoffs of two alternatives
from the drift of a Brownian motion and a similar contrast between known and unknown payoff
differences gives rise to, respectively, fixed and collapsing stopping bounds.

Comparative Statics in Stopping Beliefs. From Proposition 3 and Theorem 3, we obtain that
the distribution of beliefs shifts monotonically with respect to the true distribution. Specifically,
approximating the stopping posterior mean by the threshold, Eµi [σ−i | yτi

i ],21 and labeling actions
so that ui(1,σ−i)− ui(0,σ−i) is increasing in σ−i, then player i’s stopping (threshold) beliefs
increase in a first-order stochastic dominance sense as σ−i increases. This is because a higher σ−i

leads to a higher probability that player i chooses action 1more often and faster (resp. action 0 less
21This is so as to avoid discreteness issues inherent to the sampling procedure.
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Distance to Indifference
Player M Player C Both

(1) (2) (3)
Log Decision Time -3.682∗∗∗ -2.021∗∗ -2.961∗∗∗

(1.225) (0.881) (0.790)
Intercept 42.314∗∗∗ 45.365∗∗∗ 48.185∗∗∗

(4.181) (2.670) (2.435)
Fixed Effects Game Game Role × Game
R-Squared 0.08 0.27 0.18
Observations 1620 1680 3300
Heteroskedasticity-robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 1: Decision Time and Reported Beliefs: Time-Revealed Preference Intensity
Notes: This table presents regression results on the relation between log decision times (in seconds) and
the distance between reported beliefs to indifference points. Reported beliefs refer to elicited beliefs about
the probability the opponents plays action a; the indifference point refers to the probability that makes
the player indifferent between taking either action. Columns (1) and (2) only use data for subjects in the
roles of player M and C, respectively; column (3) uses both. The games are generalized matching pennies
games as given in Figure 1, for γC = 1 (scaled by 20); the data is from Friedman and Ward (2022).
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Figure 4: Opponent Payoff and Beliefs
Notes: This figure exhibits empirical CDF of reported (mean) beliefs about the probability with which
subjects in the role of player C believe their opponent (in the role of player M) will take action a; different
lines correspond to games with different payoffs to action a for player M as parametrized by δM . The
games are generalized matching pennies games as given in Figure 1, for γC = 1 (scaled by 20); the data is
from Friedman and Ward (2022).
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often and slower), implying that the posterior mean has to exceed a higher threshold when the
player stops earlier (resp. later), as the upper (resp. lower) bound characterizing the continuation
region is decreasing (resp. increasing) in the stopping time.

Supporting Evidence. Relying again on Friedman and Ward’s (2022) data, we find support for
both these predictions: (1) decision time is significantly negatively related to the distance between
the reported mean belief and the indifference point (Table 1), and (2) increasing a player’s pay-
off to an action significantly shifts the opponent’s beliefs in the predicted first-order stochastic
dominance sense (Figure 4)—see Online Appendix C for additional statistical tests.

4. Relation to Nash Equilibrium
One initial interpretation of Nash equilibrium posits that equilibrium beliefs are reached as play-
ers “accumulate empirical information” (Nash, 1950, p. 21). In a sequential sampling equilibrium,
players accumulate empirical information but at a cost. A natural question is whether, as these
costs vanish, sequential sampling equilibria converge to a Nash equilibrium. In this section we
show this is the case. Formally,

Theorem 4. Let Γ be a normal-form game, µ a collection of priors, and {cn}n be a sequence of

sampling costs such that cn → 0. For any sequence {σn}n such that each σn is a sequential sampling

equilibrium of extended game Gn = 〈Γ,µ, cn〉, the limit points of {σn}n are Nash equilibria of Γ.

The claim is conventional in form: players best-respond to their beliefs and their beliefs converge
to the true distribution of actions of their opponents.22 The main complication comes from the
fact that, conditional on stopping, the observations yτi

i are not independent nor independently
distributed according to player i’s opponents’ action distribution. To overcome this issue, the
proof (see Appendix A) relies on three arguments. First, from Lemma 4 one has that as sampling
costs vanish, players acquire a minimum number of observations T , and, for that minimum num-
ber, each observation yT

i is iid according to the opponents’ action distribution. Second, we note
beliefs accumulate at a uniform rate around the empirical mean of the observed signals. Finally,
we use the optional stopping theorem to show that beliefs upon stopping converge to the true
underlying distribution in an appropriate manner.

Some comments on which Nash equilibria can be selected in this manner are in order. First, let
us define the concept of reachability of a Nash equilibrium:
22This will hold regardless of whether players’ prior beliefs allow or not for opponent action correlation.
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Definition 7. A Nash equilibrium σ of a normal-form game Γ is reachable if there is a collection
of priors µ, a sequence of costs {cn}n ⊂ R++ such that cn → 0, and a sequence {σn}n, where for
each n, σn is a sequential sampling equilibrium of the extended game Gn = 〈Γ,µ, cn〉, such that
σn →σ. A Nash equilibrium if robustly reachable if it is reachable for any collection of priors µ.

In the remainder of the section, we will restrict player’s payoffs to be linear in distributions
as usual. In other words, we require that, for every player i, ui(ai,σ−i) = Eσ−i [ui(ai,a−i)], as
conventional. This will be a maintained assumption throughout the rest of this section.

Our first result provides, separately, necessary and sufficient conditions for reachability of a Nash
equilibrium.

Proposition 4. Let Γ be a normal-form game. (1) If σ is a Nash equilibrium of Γ involving weakly

dominated actions, then σ is not reachable. (2) If a is a pure-strategy Nash equilibrium of Γ not

involving weakly dominated actions, then a is reachable.

Part (1) holds since for any prior, no player will ever choose weakly dominated actions—recall
that priors have full support. For (2), note that if a does not involve weakly dominated strategies,
then, by Pearce’s (1984) Lemma 4, for each player i there is σ0

−i ∈ int∆(A−i) such that ai is a
best response to σ0

−i. If we endow each player i with prior µi ∈ ∆(∆(A−i)) corresponding to a
Dirichlet distribution with mean σ0

−i, then ai is a best response to any posterior belief µi | yt
i

when yi,t = a−i. Hence, for any costs cn, σ is sequential sampling equilibrium of 〈Γ,µ, cn〉. Note
that we require the Nash equilibrium to be in pure-strategies in order to control posterior beliefs
exactly, as otherwise, with some probability, σi may not be a best response to the posterior belief
held upon stopping.

For a Nash equilibrium to be reachable with any priors, we obtain a sufficient condition:

Proposition 5. If a is a pure-strategy Nash equilibrium in undominated strategies of the normal-

form game Γ such that, for any player i, ai is a best response to any σ′
−i ∈ Bϵi (δa−i ) for some ϵi > 0,

then a is robustly reachable.

The intuition for the proof (in Appendix A) is as follows: for any prior, if player i samples enough
a−i observations, their posterior meanwill lie within ϵi of a−i and choosing ai is optimal. Lemma
4 guarantees that players do sample enough. Our requirement that ai is a best response to any
distribution of opponents’ actions assigning high enough probability to a−i is at the same time
more relaxed than strict Nash equilibrium, and more restrictive than trembling hand perfection.
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5. A Dynamic Formulation
One can view sequential sampling equilibrium as a steady state of a dynamic process in whereby
agents sequentially sample from past realizations. This section formalizes that argument.

Dynamic Sequential Sampling. To fix ideas, consider a simple dynamic process, similar to
fictitious play. Fix an extended game G. Every period, n = 1,2, ..., a unit measure of agents plays
the extended game G, evenly divided across the different roles I . Each agent believes they face a
stationary distribution of opponents’ actions, matching the empirical frequency of past actions,
σn−1 ∈∆(A), not knowing calendar time.

Within period n, each agent with role i leans about σn−1
−i by optimally sequentially samples

according to τi. Upon stopping, the agent best responds to their posterior beliefs.23 This induces a
distribution of actions and types in period n given by b(σn−1), where b :∆(A)→∆(A) is such that
b(σ)(a) := ×i∈I bi(σ−i)(ai), with bi(σ−i) := Eσ−i [σ

∗
i (µi | yτi

i )], as before. After taking an action,
agents then exit and are replaced by a new population as is standard in evolutionary models of
learning in strategic settings. At the start of the following period, the empirical frequency is
then σn = 1

n+1 b(σn−1)+ n
n+1σ

n−1, with σ0 given. Call any such {σn}n a dynamic sequential
sampling process of G.

While akin to fictitious play (Brown, 1951), under dynamic sequential sampling, each agent ob-
serves but a sample of past play realizations and the sample itself is an endogenous object.

Equilibria and Steady States. Wenow show an equivalence between sequential sampling equi-
libria and steady states of dynamic sequential sampling processes.

Theorem 5. Let G be an extended game. σ is a sequential sampling equilibrium of G if and only

if there is some dynamic sequential process {σn}n of G such that σn →σ.

Proof. We restrict attention to the if part, since the converse is immediate. Let σ̄ denote the limit
of σn. Then,

0= lim
n→∞

∥∥σn − σ̄∥∥∞ =
∥∥∥ lim

n→∞σ
n − σ̄

∥∥∥
∞
=

∥∥∥∥∥ lim
n→∞

1
n+1

σ0 + n
n+1

(
1
n

∑
ℓ∈[0..n−1]

b(σℓ)

)
− σ̄

∥∥∥∥∥∞
.

Asσn → σ̄ and b is continuous, then b(σn)→ b(σ̄). Consequently, the Cesàromean 1
n

∑
ℓ∈[0..n−1] b(σℓ)

also converges to b(σ̄) and therefore 0= ∥b(σ̄)− σ̄∥∞ =⇒ b(σ̄)= σ̄.
23We keep fixed a selection of best responses σ∗

i used to break-ties.
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The steady-state characterization of sequential sampling equilibria in Theorem 5 provides a clear
analogue to the characterization of Nash equilibria as steady-states of fictitious play in Fuden-
berg and Kreps (1993). The main difference between fictitious play and the dynamic process
analyzed is that, whereas data is freely observable in fictitious play, sequential sampling players
face information acquisition costs. Moreover, as we have seen (Theorem 4), as these costs van-
ish, limiting sequential sampling equilibria correspond to Nash equilibria. Below we discuss two
ways in which the dynamic process can be generalized.

Remark 4. Often it may be the case that information about more recent events is more easily
accessible. This can be modeled as a giving a different weight to each period, for instance, expo-
nential discounting past data: σn =βσn−1+(1−β)b(σn−1), β ∈ (0,1). Theorem 5 also holds under
this alternative definition: as σn → σ̄ =⇒ b(σn) → b(σ̄) and, for any fixed ℓ, βn−1−ℓb(σℓ) → 0,
we have σn =βnσ0 + (1−β) ·∑ℓ∈[0..n−1]β

n−1−ℓ ·b(σℓ)→ σ̄= b(σ̄).

Remark 5. The assumption that there is a continuum of agents for each role is also not essential:
a similar result holds when the populations are finite. Write an for the realized actions in period
n and σn for their empirical frequency (given a0), with an ∼ b(σn−1).24 Note that σn → σ̄ still
implies that b(σn) → b(σ̄), and the arguments above remain the same, with an converging in
distribution to a sequential sampling equilibrium.

Convergence. While in general we cannot exclude dynamic sequential sampling from cycling
and failing to converge—similarly to what occurs with fictitious play25 — in specific classes of
games, convergence and asymptotic stability are guaranteed.26 This next proposition shows this
is the case for binary action games, which we will discuss in more depth in the next section.

Proposition 6. LetG = 〈Γ,µ, c〉 be a two-player extended game. If Γ has a unique Nash equilibrium,

the limit of dynamic sequential sampling is a globally asymptotically stable sequential sampling

equilibrium.

The proof is deferred to the appendix.
24If agents directly sample data with past actions, {aℓ}ℓ<n, one may worry that about whether sampling without
replacement affects the result; this is not the case—provided, of course, the starting dataset large enough (but still
finite; cf. Remark 1) so that sequential sampling without replacement is well defined.

25Classical references are Shapley (1964) and Jordan (1993). Cycling can occur even with stochastic fictitious play:
see Hommes and Ochea (2012).

26An equilibrium σ is asymptotically stable if for all ϵ > 0, there is a δ > 0 such that for any σ0 : ∥σ0 −σ∥∞ < δ,
∥σn−σ∥∞ < ϵ for all n. That is, if the dynamic sequential sampling process starting close enough to the equilibrium
remains closeby thereafter.
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6. Extensions and Discussion
We conclude with a discussion of possible extensions of sequential sampling equilibrium.

Types and Bayesian Games. Sequential sampling equilibrium can be easily extended to ac-
commodate Bayesian games. This aligns with the idea that sequential sampling equilibria corre-
sponds to the case in which players don’t know their opponents’ payoffs, as given by their type.
Alternatively, one can consider that different types characterize different settings, and players
are using information about behavior in similar settings to make inferences about behavior in
the particular game they are facing.

In particular, consider games described by Γ := 〈I, A,Θ,ρ,u〉, such that I denote the finite set of
players, A :=×i∈I A i the (finite) set of action profiles, Θ=×i∈IΘi the (finite) set of type profiles,
whereΘi are player i’s possible types, ui : A×Θ→R payoff functions, and ρ ∈∆(Θ) a distribution
over types. Endowing each player i with a prior µi ∈ ∆(∆(A−i ×Θ)) and a sampling cost ci as
before we have extended games G = 〈Γ,µ, c〉. Each player i with type θi now learns about the
joint distribution of opponents’ action profiles and type profiles, qi ∈ ∆(A−i ×Θ), sequentially
sampling from qi at cost ci and stopping according to the earliest optimal stopping time τi,θi .

A sequential sampling equilibrium σ would then correspond to a fixed point such that σi,θi =
Eqi [σ

∗
i,θi

(µi | y
τi,θi
i )], whereσ∗

i,θi
(µi) is a selection of best responses given beliefµi, and qi,θi (a−i,θ)=

ρ(θ)× j ̸=iσ j,θ j (a j) for every a−i = (a j) j ̸=i ∈ A−i and θ = (θ j) j∈I ∈Θ.
Different assumptions on players beliefs will give rise to different equilibria. To apply similar
arguments to obtain existence of an equilibrium, we need but to require that players know the
distribution of their own types and that µi has full support on the set of distributions qi ∈∆(A−i×
Θ) satisfying qi(θi)= ρ(θi) for any θi ∈Θi.27 Differently, one could assume players know the true
distribution of types, or, when types are independent, that they know so.

With the proper adjustments, behavioral implications can also be obtained, now comparing across
types. For instance, if the payoff to action ai is higher for type θi than for θ′i, everything else
equal, in every sequential sampling equilibrium type θi chooses action ai more often and faster
(in the sense of Theorem 3) than type θ′i, a result that can be exploited and tested in a number of
traditional settings, from global games to voting. Finally, convergence to Bayesian Nash equilibria
when sampling costs vanish can be similarly obtained.
27This renders their expected payoff given their type, Eqi [ui(ai,a−i,θ) | θi], to be continuous in qi ∈ suppµi .
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General Information Structures and Analogy Partitions. Throughout, it was assumed that
players observe action profiles drawn from a steady state distribution. Often, of course, information—
and evenmemory—is fuzzier, and it is not possible to perfectly distinguish between certain actions
taken by others, or even to observe what some other players do at all. In Online Appendix B, we
provide sufficient conditions under which is it possible to generalize sequential sampling equilib-
rium to cases under which players observe not action profiles of their opponents, but a garbling,
thereby accommodating situations such as noisy recollections, or missing or misrecorded data.
This formalism can also be used to formalize the idea that players’ payoffs may depend on the
behavior of others about which they are unable to obtain information. For instance, it may be
possible to obtain information about behavior within the same firm, but impossible to learn what
people do in other firms. For the special case in which players are unable to distinguish between
specific action profiles (or types) of their opponents, as sampling costs vanish, sequential sam-
pling equilibria reach not Nash equilibria but analogy-based expectation equilibria (Jehiel, 2005;
Jehiel and Koessler, 2008).

Sampling Costs and Discounting. In this paper, we considered a constant additive cost per
observation. One could have defined this cost of information in a more general manner, allow-
ing it to depend on the number of observations already acquired, or allowing a finite number of
observations at no cost. Alternatively, one could rely on discounting payoffs instead. It is in-
deed possible to extend the setup to accommodate either, posing no problem for existence of an
equilibrium.

Misspecified Priors. Another maintained assumption was that priors are not misspecified, i.e.
players are able to learn the true data generating process. This assumption was crucial to obtain
existence of an equilibrium: it is the full support of players’ prior that guarantees that, as they
acquire more and more observations, their beliefs accumulate around a degenerate distribution.
When, instead, priors are misspecified, it is possible that players never stop sampling (accord-
ing to the true data generating process), even though they believe they will (according to their
posterior beliefs). We provide one such example of nonexistence in Online Appendix D.

Empirical Estimation. Empirical estimation of the baseline model is facilitated by utilizing
Dirichlet beliefs, a flexible class of priors with parameters αi = (αi

1, ...,αi
n), where n = |A−i|.

When n = 2, it corresponds to the Beta distribution. It can be shown that, for this rich class
of conjugate priors, given player i’s payoffs and sampling costs, there is a compact set of param-
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eters αi for which player i would sample. This also implies the existence of a tight upper bound
for the stopping time T for any Dirichlet prior, converting the infinite horizon problem in a finite
horizon one and rendering it a computationally tractable problem. Assuming payoffs are known,
a particular parameter and sampling cost would map to a given joint distribution of actions and
stopping time. Maximum likelihood and other estimation procedures analogous to those relied
upon for sequential sampling models in individual decision-making tasks can then be used (see
e.g. Myers et al., 2022).28

Myopic Sequential Sampling. Finally, a comment on a simpler, alternative, version of sequen-
tial sampling equilibrium, in which sequential sampling behavior is myopic. This is closely re-
lated to a recent paper by Alaoui and Penta (2022), which provides an axiomatization of the
deliberation process as one of myopic sequential information acquisition (cf. their Theorem 4).
In other words, the myopic stopping time would be given by τM

i (ω) := min{t | Eµi [vi(µi | yt+1
i ) |

yt
i (ω)]− vi(µi | yt

i (ω)) ≤ ci}, with players stopping whenever the expected value of sampling in-
formation is smaller than the cost of one more observation.

One could then define myopic sequential sampling equilibria simply by replacing the optimal
stopping time τi with the myopic one τM

i . While appealing for its simplicity, one immediate
implication is that myopic sequential sampling equilibria do not generically reach Nash equilibria
as the sampling costs vanish. This is because the expected value of sampling information is zero
whenever the optimal choices under beliefµi are still optimal under the posteriorµi | yi, nomatter
the realization of the observation. It is therefore immediate that any prior that is sufficiently
concentrated around a distribution of opponents’ actions for which ai is a strict best response,
for any ci > 0, player i will not see it worthwhile to acquire information. Thus, if in no Nash
equilibrium it is optimal to play such an action with probability 1, myopic sequential sampling
will fail to converge to a Nash equilibrium.
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Appendix A. Omitted Proofs
Proof of Proposition 1. For ease of notation, I’ll write Yi := A−i, Pi := ∆(Yi), and µi ∈ ∆(Pi).
We consider general continuous utility functions ui : A i ×Pi → R. Boundedness of Vi and vi

follows immediately from boundedness of ui. Below we prove the remaining properties.

Claim 1. For any µi ∈∆(Pi), and any optimal stopping time τi, Pµi (τi > T)≤ 2∥ui∥∞/ciT .

Proof. Let ∥ui∥∞ = max(ai ,pi)∈A i×Pi |u(ai, pi)| < ∞. We then have that, for any µi ∈ ∆(Pi) and
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T ∈N,
−∥ui∥∞ ≤Vi(µi)≤Pµi (τi ≤ T)∥ui∥∞+Pµi (τi > T)(∥ui∥∞− ciT)=⇒Pµi (τi > T)≤ 2∥ui∥∞/ciT.

Claim 2. vi is uniformly continuous.

Proof. Eµi [ui(ai, pi)] is jointly continuous in (ai,µi) with respect to product topology. Let µi,n →
µi, ai,n → ai. Note that ∀ϵ > 0, ∃N such that ∀n ≥ N , ∀pi, |ui(ai,n, pi)− ui(ai, pi)| < ϵ/2 and
|Eµi,n[ui(ai, pi)]−Eµi [ui(ai, pi)]| < ϵ/2. Hence,
|Eµi,n[ui(ai,n, pi)]−Eµi [ui(ai, pi)]| ≤ |Eµi,n[ui(ai,n, p)−ui(ai, pi)]|+|Eµi,n[ui(ai, pi)]−Eµi [ui(ai, pi)]| < ϵ.
Continuity of vi follows from Berge’s maximum theorem and uniform continuity from Heine–
Cantor theorem.

Claim 3. Vi is uniformly continuous.

Proof. Let Ti,T denote the set of stopping times τ′ ∈ Ti that are bounded above by T and, for
every T ∈N, Vi,T :∆(Pi)→R be given by

Vi,T(µ) := sup
τ′∈Ti,T

Eµi [vi(µi | yτ
′

i )− ci ·τ′].

Note that, as Ti,T is finite, it is compact with respect to the discrete topology, and an application
of Berge’s maximum theorem implies Vi,T is continuous.

Note that, for any µi ∈ ∆(Pi), T ∈ N, 0 ≤ Vi(µi)−Vi,T(µi) ≤ Pµi (τi > T)∥ui∥∞ ≤ 2∥ui∥2∞/ciT.

Hence, ∥Vi −Vi,T∥ ≤ 2∥ui∥2∞/ciT, and Vi,T converges uniformly to Vi. Since for any T , Vi,T is in
the space of bounded continuous functions C0

b(∆(Pi)), which, endowed with the sup-norm is a
Banach space, Vi is continuous; by the Heine–Cantor theorem, it is uniformly continuous.

Claim 4. vi, Vi, and Vi,T are convex, for any T ∈N.
Proof. This follows since each of these can be seen as the pointwise supremum over a family of
convex functions over ∆(Pi), which is compact with respect to ∥ ·∥LP .

Proof of Lemma 1. By contrapositive, that (2) implies (1) is straightforward. We prove a more
general claim that implies the converse. Let Στi

−i := {σ−i ∈∆(A−i) | Pσ−i (τi <∞) = 1} denote the
opponents’ distribution actions with respect to which player i’s optimal stopping time is finite
with probability 1.

Lemma 6. On Στi
−i, bi is a continuous mapping to ∆(A i).
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Proof. Fix a selection of optimal choices σ∗
i (µ′

i) ∈ argmaxσi∈∆(A i)Eµ′i
[ui(σi,σ′

−i)]. For t ∈ N, let
bi,t : Στi

−i → [0,1]|A i | be given by bi,t(σ−i) := Eσ−i [1τi<tσ
∗
i (µi | yτi

i )], and pi,t : Στi
−i → [0,1] denote

pi,t(σ−i) :=Pσ−i (τi < t). Note that, for every t′ ≥ t, bi,t ≤ bi,t′ and pi,t ≤ pi,t′ , ensuring pointwise
convergence to bi and 1, respectively. Further, both bi,t and pi,t are continuous.

Since pi,t → 1, by Dino’s theorem pi,t converges uniformly on Στi
−i. We then have ∥bi(σ−i)−

bi,t(σ−i)∥1 ≤ 1− i,t(σ−i), and bi,t also converges uniformly to bi |Στi
−i

: Στi
−i → [0,1]|A i |, ensuring

that, on Στi
−i, bi is continuous. To see that bi(σ−i) ∈ ∆(A i) for any σ−i ∈ Στi

−i, note that 1 ≥
∥bi(σ−i)∥1 ≥ ∥bi,t(σ−i)∥1 ≥ pi,t(σ−i)→ 1.

Proof of Remark 1. Let ∑
ℓ∈[1.. t]δyt

i,ℓ
/t =: yi

t ∈ ∆(A−i) denote the empirical frequency. When
µi has full support on ∆(A−i), then there is φ : R++ → R++ such that infσ−i∈∆(A−i)µ(Bϵ(σ−i)) ≥
φ(ϵ). Then, by Diaconis and Freedman (1990), for every ϵ > 0, there is T such that for all t ≥ T ,
µi,t(Bϵ/2(yi

t))/(1−µi,t(Bϵ/2(yi
t)) ≥ 2−ϵ

ϵ
, which implies ∥µi,t −δyi

t∥LP ≤ ϵ. Immediately, for every
ϵ> 0, there is T such that for all t ≥ T ,

∥µi,t −µi,t+1∥LP ≤ ∥µi,t −δyi
t∥LP +∥µi,t+1 −δyi

t+1∥LP +∥δyi
t −δyi

t+1∥LP ≤ 2/3ϵ+2/t ≤ ϵ.
As Vi is uniformly continuous (cf. Proposition 1), this implies ∃T i such that ∀t ≥ T , ∀yt+1

i ,
Vi(µi | yt+1

i )−Vi(µi | yt
i )≤ ci =⇒ Eµi [Vi(µi | yt+1

i )−Vi(µi | yt
i ) | yt

i ]≤ ci =⇒ τi ≤ T i.

When the prior does not allow for correlation, µi = × j ̸=iµi j and each marginal µi j uniformly
accumulates around the empirical frequency projected on ∆(A j). As I is finite, one can similarly
obtain a uniform rate of convergence that depends only on t. It is then straightforward to adjust
the proof to obtain the result.

Proof of Proposition 6. Let A i = {0,1}, i ∈ I; denote the probability that player i chooses action
1 by σi. By manner of a continuous-time approximation as in Fudenberg and Levine (1998, Ch.
2), the dynamic system can be written as σ̇i = bi(σ j)−σi, i, j ∈ I , i ̸= j. The Jacobian of the
dynamic system is given by (

−1 b′
i(σ j)

b′
j(σi) −1

)

and its eigenvalues are given by λ = −1±
√

b′
i(σ j)b′

j(σi), where differentiability of bi,b j is en-
sured by Theorem 3. If b′

i(σ j)b′
j(σi) ≤ 0, there is a unique σ such that bi(σ j) =σi and, since the

real parts of the eigenvalues of the Jacobian matrix are strictly negative, by the Jacobian conjec-
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ture on global asymptotic stability—proved to hold on the plane (Chen et al., 2001)—σ is globally
asymptotically stable.

In particular, if there is a unique Nash equilibrium, either one player has a dominant strategy
(and then b′

i = 0 for some player i) or neither does. If some player does not sample, i.e. τi = 0 for
some player i, then again b′

i = 0. If both players sample, we must then have b′
i(σ j)b′

j(σi)< 0. In
any of these cases, b′

i(σ j)b′
j(σi)≤ 0.

Proof of Remark 2. Let c′i ≥ ci and denote V ′
i and Vi the value functions associated with c′i and

ci, respectively. Since vi(µi) ≤ V ′
i (µi) ≤ Vi(µi), it is immediate that Vi(µi) = vi(µi) =⇒ V ′

i (µi) =
vi(µi). Let τ′i and τi the earliest optimal stopping times associated with c′i and ci, respectively.
Then{
ω ∈Ω

∣∣∣ τi(ω)≤ t
}
=

{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Vi(µi | yt′

i (ω))= vi(µi | yt′
i (ω))

Vi(µi | yℓi (ω))> vi(µi | yℓi (ω)), ∀ℓ< t′

}

⊆
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
V ′

i (µi | yt′
i (ω))= vi(µi | yt′

i (ω))

V ′
i (µi | yℓi (ω))> vi(µi | yℓi (ω)), ∀ℓ< t′

}
= {

ω ∈Ω : τ′i(ω)≤ t
}
.

Proof of Lemma 2. Take any ai ∈ A i \ Ak
i . For δ≥ 0 define

Bδ(∆(Ak−1
−i )) := {σ−i ∈∆(A−i) | ∃σ′

−i ∈∆(Ak−1
−i ) : ∥σ−i −σ′

−i∥ ≤ δ}

hk
i (δ) := max

σ−i∈Bδ(∆(Ak−1
−i ))

(
ui(ai,σ−i)− max

σ′
i∈∆(A i)

ui(σ′
i,σ−i)

)
.

Since ui is continuous and δ 7→ Bδ(∆(Ak−1
−i )) is a continuous, convex-, compact-, and nonempty-

valued correspondence, hk
i is continuous by Berge’s maximum theorem. As Bδ(∆(Ak−1

−i )) in-
creases in subset order with δ, hk

i is nondecreasing.

By definition of k-rationalizability, hk
i (0)< 0. This implies that there is δ′ > 0 such that, ∀δ≤ δ′,

hk
i (δ)≤ hk

i (0)/2< 0. Then, for any δ< δ′, and anyσ−i ∈ Bδ(∆(Ak−1
−i )), ui(ai,σ−i)−maxσ′

i∈∆(A i) ui(σ′
i,σ−i)≤

hk
i (0)/2 < 0. Finally, observe that maxσ−i∈∆(A−i)\∆(Ak−1

−i ) maxσi∈∆(A i) ui(ai,σ−i) − ui(σi,σ−i) <
2∥ui∥∞. Let ϵ<−hk

i (0)/(4∥ui∥∞−hk
i (0)) and µi(Bδ(∆(Ak−1

−i )))> 1−ϵ. It then follows that

Eµi [ui(ai,σ−i)]− max
σi∈∆(A i)

Eµi [ui(σi,σ−i)]≤µi(Bδ(∆(Ak−1
−i )))hk

i (0)/2+ (1−µi(Bδ(∆(Ak−1
−i ))))2∥ui∥∞

< (1−ϵ)hk
i (0)/2+ϵ2∥ui∥∞ < 0.

Proof of Lemma 3. By assumption, yt
i ∈∆(Ak−1

−i ). Since every player’s prior has full support, by
Diaconis and Freedman (1990), each player’s prior concentrates on an δ-ball around the empirical
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frequency of at a uniform rate. This implies that, for any δ,ϵ > 0 there is a T such that, for all
t ≥ T and any yt

i ∈ Ak−1
−i , µi,t(Bδ(∆(Ak−1

−i )))≥µi,t(Bδ(δyt
i
))> 1−ϵ.

Auxiliary Results.

Lemma 7. For any ϵ > 0, ∃δ > 0 such that for any T ∈ N, ci > 0, Eµi [vi(δσ−i )]−Vi(µi) ≤ (1−
2exp(−2Tδ2))ϵ/4+8exp(−2Tδ2)∥ui∥∞+ ciT .

Proof. Let T̂i be the stopping time such that player i stops after T periods and let yT
i denote the

empirical frequency of yT
i , i.e. yT

i := ∑
t∈[1..T]δyi,t /T . Let âi : ∆(A−i) → A i be such that âi(µ′

i) ∈
argmaxEµ′i [ui(ai,σ−i)]. Since ui(ai(σ−i),σ−i) = maxai∈A i ui(ai,σ−i) is continuous by Berge’s
maximum theorem and uniformly so by Heine–Cantor theorem, let δ > 0 be such that for any
∥σ−i−σ′

−i∥ < δ=⇒ |ui(ai(σ−i),σ−i)−ui(ai(σ′
−i),σ

′
−i)|+|ui(ai(σ′

−i),σ−i)−ui(ai(σ′
−i),σ

′
−i)| < ϵ/4.

Since T̂i and âi(yT̂i
i ) are potentially suboptimal stopping time and choices for player i, Vi(µi) ≥

Eµi [ui(âi(yT̂i
i ),σ−i)− ciT̂i]. For ci = k/(4T)> 0,

Eµi [vi(δσ−i )]−Vi(µi)≤ Eµi [ui(âi(σ−i),σ−i)−ui(âi(yT̂i ),σ−i)+ ciT̂i]

= Eµi [ui(âi(σ−i),σ−i)−ui(âi(yT̂i ), yT̂i
i )+ui(âi(yT̂i

i ), yT̂i
i )−ui(âi(yT̂i

i ),σ−i)]+ ciT

≤ (1−2exp(−2Tδ2))ϵ/4+8exp(−2Tδ2)∥ui∥∞+ ciT,

where the last inequality follows by the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (Mas-
sart, 1990), which delivers that, for any δ> 0 and σ−i, Pσ−i (∥σ−i − yT

i ∥ > δ)< 2exp(−2Tδ2).

Proof of Lemma 4. We first prove the weaker statement:

Claim 5. Suppose that there is no action ai that is a best response to all distribution of opponents’

actions σ−i ∈ ∆(A−i). Then, for any full support prior µi ∈ ∆(A−i), there is a sampling cost ci > 0

such that the associated earliest optimal stopping time τi ≥ 1.

Proof. Let us start by showing that Eµi [vi(δσ−i )]− vi(µi) > 0. Since there is no action ai that
is a best response to all distribution of opponents’ actions σ−i ∈ ∆(A−i), for any µi with full
support and any ai(µi) ∈ argmaxai∈A i

Eµi [ui(ai,σ−i)], there is σ′
−i ∈∆(A−i) such that vi(δσ′

−i
)=

maxai∈A i ui(ai,σ′
−i) > ui(ai(µi),σ′

−i). By continuity, there is an ϵ > 0 such that for all σ′′
−i ∈

Bϵ(σ′
−i), vi(δσ′′

−i
)−ui(ai(µi),σ′′

−i)≥ (vi(δ′σ−i
)−ui(ai(µi),σ′

−i))/2> 0. Hence, Eµi [vi(δσ−i )]−vi(µi)≥
µi(Bϵ(δσ′

−i
))(vi(δ′σ−i

)−ui(ai(µi),σ′
−i))/2> 0.

Next, we show that, if ci is low enough,Vi(µi)> vi(µi) (implying τi ≥ 1) by proving that Eµi [vi(δσ−i )]−
Vi(µi) < Eµi [vi(δσ−i )]− vi(µi) =: k. By Lemma 7, for any ϵ > 0, ∃δ > 0 such that for any T ∈ N,
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ci > 0, Eµi [vi(δσ−i )]−Vi(µi) ≤ (1−2exp(−2Tδ2))ϵ/4+8exp(−2Tδ2)∥ui∥∞+ ciT . Letting ϵ = k,
ci = k/(4T), we have Eµi [vi(δσ−i )]−Vi(µi) ≤ k/2+ 8exp(−2Tδ2)∥ui∥∞. It is then straightfor-
ward to see that, for T large enough (and ci > 0 small enough), Eµi [vi(δσ−i )]−Vi(µi) < k =
Eµi [vi(δσ−i )]−vi(µi), proving the result.

Now consider all possible posteriors following any possible t realizations, {µi | yt
i , yt

i ∈∪t∈[1..T]Y t},
observing that this is a finite set. Given the nature of the information process, since the prior µi

has full support, so do the posterior beliefs. By the above claim, for each µi | yt
i , there is a cost

ci > 0 such that player i would find it optimal to acquire at least one more signal. Taking the
lowest of all such costs implies that under such cost, player i would deem it optimal to acquire
at least T signals, concluding the proof.

Proof of Theorem 3. Label player i’s actions so that ui(1,σ−i)−ui(0,σ−i) is increasing in σ−i.

Proof of Theorem 3(i). We first prove a more general comparative statics result:

Proposition 7. Pσ−i (ai ∈ A∗
i (µi | yτi

i ) and τi ≤ t) is increasing with respect to ≥ai , and Pσ−i (ai ∉
A∗

i (µi | yτi
i ) and τi ≤ t) is decreasing with respect to ≥ai , for any t ∈N and σ−i ∈∆(A−i).

Proof. Let ũi ≥ai ui and denote the respective (i) value functions, (ii) earliest optimal stopping
times, (iii) optimal choices at given beliefs, and (iv) selections of optimal choices by (i) Ṽi and Vi,
(ii) τ̃i and τi, (iii) Ã∗

i and A∗
i , and (iv) σ̃∗

i and σ∗
i , respectively. With g := ũi(ai, ·)−ui(ai, ·), by

definition we obtain

Vi(µi)+Eµi [σ̃
∗
i (µi | yτ̃i

i )(ai)g(σ′
−i)] ≥ Ṽi(µi) ≥ Vi(µi)+Eµi [σ

∗
i (µi | yτi

i )(ai)g(σ′
−i)] ≥ Vi(µi)

Lemma8. Vi(µi)= Eµi [ui(ai,σ′
−i)]=⇒ Ṽi(µi)= Eµi [ũi(ai,σ′

−i)] and, for a′
i ̸= ai Ṽi(µi)= Eµi [ũi(a′

i,σ
′
−i)]=⇒

Vi(µi)= Eµi [ui(a′
i,σ

′
−i)].

Proof. Since Eµi [σ̃
∗
i (µi | yτ̃i

i )(ai)g(σ′
−i)]≤ Eµi [g(σ′

−i)], ifVi(µi)= Eµi [ui(ai,σ′
−i)], then Eµi [ũi(ai,σ′

−i)]=
Eµi [ui(ai,σ′

−i)]+Eµi [g(σ′
−i)]≥Vi(µi)+Eµi [σ̃

∗
i (µi | yτ̃i

i )(ai)g(σ′
−i)]≥ Ṽi(µi)≥ Eµi [ũi(ai,σ′

−i)]. More-
over, if Ṽi(µi)= Eµi [ũi(a′

i,σ
′
−i)]= Eµi [ui(a′

i,σ
′
−i)], then Eµi [ui(a′

i,σ
′
−i)]= Ṽi(µi)≥Vi(µi)≥ Eµi [ui(a′

i,σ
′
−i)].

Note that, by the contrapositive of Lemma 8, Ṽi(µi)> Eµi [ũi(ai,σ′
−i)]=⇒Vi(µi)> Eµi [ui(ai,σ′

−i)]

and Vi(µi)> Eµi [ui(a′
i,σ

′
−i)]=⇒ Ṽi(µi)> Eµi [ũi(a′

i,σ
′
−i)] for a′

i ̸= ai. This implies{
ω ∈Ω

∣∣∣ τi(ω)≤ t and ai ∈ A∗
i (µi | yτi

i (ω))
}
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=
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Vi(µi | yt′

i (ω))= Eµi [ui(ai,σ′
−i) | yt′

i (ω)]

Vi(µi | yℓi (ω))> Eµi [ui(a′
i,σ

′
−i) | yt′

i (ω)], ∀ℓ< t′,∀a′
i

}

⊆
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Ṽi(µi | yt′

i (ω))= Eµi [ũi(ai,σ′
−i) | yt′

i (ω)]

Ṽi(µi | yℓi (ω))> Eµi [ui(a′
i,σ

′
−i) | yt′

i (ω)], ∀ℓ< t′,∀a′
i ̸= ai

}

=
{
ω ∈Ω

∣∣∣ τ̃i(ω)≤ t and ai ∈ Ã∗
i (µi | yτ̃i

i (ω))
}

and {
ω ∈Ω

∣∣∣ τ̃i(ω)≤ t and ai ∉ Ã∗
i (µi | yτ̃i

i (ω))
}

=
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Ṽi(µi | yt′

i (ω))= ṽi(µi | yt′
i (ω))> Eµi [ũi(ai,σ′

−i) | yt′
i (ω)]

Ṽi(µi | yℓi (ω))> Eµi [ui(a′
i,σ

′
−i) | yt′

i (ω)], ∀ℓ< t′,∀a′
i

}

⊆
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Vi(µi | yt′

i (ω))= vi(µi | yt′
i (ω))> Eµi [ui(ai,σ′

−i) | yt′
i (ω)]

Vi(µi | yℓi (ω))> Eµi [ui(ai,σ′
−i) | yt′

i (ω)], ∀ℓ< t′

}

=
{
ω ∈Ω

∣∣∣ τi(ω)≤ t and ai ∉ A∗
i (µi | yτi

i (ω))
}

.

The above, together with Lemma 5—which is proved independently from Theorem 3(i)—delivers
the result. Note that Proposition 7 further implies

Corollary 1. Pσ−i (ai ∈ (resp. ∉)A∗
i (µi | yτi

i ) | τi ≤ t) is increasing (resp. decreasing) with respect to

≥ai , ∀σ−i ∈∆(A−i) and t ∈N.

Proof of Theorem 3(ii). For ai ∈ {0,1}, define (i) uai
i (a′

i,σ−i) := ui(a′
i,σ−i)−ui(1−ai,σ−i), (ii)

vai
i (µi) := maxa′

i∈A i Eµi [u
ai
i (a′

i,σ−i)], and (iii) V ai
i (µi) := supti∈Ti

Eµi [v
ai
i (µi | yti

i )− ci · ti]. Note
that, by definition, uai

i (1− ai,σ−i) = 0. Moreover, vai
i (µi) = vi(µi)−Eµi [ui(1− ai,σ−i)], which

also implies that V ai
i (µi)=Vi(µi)−Eµi [ui(1−ai,σ−i)]. A useful property of V ai

i is as follows:

Lemma 9. For any µ′
i ≥SSD µi V 1

i (µ′
i)≥V 1

i (µi) and V 0
i (µ′

i)≤V 0
i (µi).

Proof. LetBai
i : C 0(∆(∆(A−i)))→C 0(∆(∆(A−i))) be such thatBai

i (w)(µi) :=max{vai
i (µi),Eµi [w(µi |

yi)]− ci}. As argued in Section 2, V ai
i is a fixed-point of Bai

i . Moreover, by Remark 1, there is a
finite n ∈N, such that V ai

i = Bai
i

(n)(vai
i ), where Bai

i
(1) = Bai

i and, for n ≥ 1, Bai
i

(n+1) = Bai
i ◦Bai

i
(n).

Note that v1
i (resp. v0

i is increasing (resp. decreasing) in ≥SSD . If w ∈C 0(∆(∆(A−i))) is increasing
in ≥SSD , then so is B1

i (w)—a symmetric argument applies to B0
i . To see this, note that

B1
i (w)(µ′

i)=max{v1
i (µ′

i),Eµ′i [σ−i]w(µ′
i | 1)+Eµ′i [1−σ−i]w(µ′

i | 0)− ci}

≥max{v1
i (µi),Eµ′i [σ−i]w(µi | 1)+Eµ′i [1−σ−i]w(µi | 0)− ci}
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≥max{v1
i (µi),Eµi [σ−i]w(µi | 1)+Eµi [1−σ−i]w(µi | 0)− ci}= B1

i (w)(µi),

where the first inequality follows frommonotonicity of v1
i with respect to≥SSD , by monotonicity

of w and the fact that µ′
i ≥SSD µi =⇒ µ′

i|yi ≥SSD µi|yi for yi ∈ {0,1}, and the second because
Eµ′i

[σ−i]≥ Eµi [σ−i] (by FOSD) and, as can be shown, µi|1≥SSD µi|0, implying w(µi|1)≥ w(µi|0).

Lemma 9 implies:

Corollary 2. Let µ′
i ≥SSD µi. Vi(µ′

i | yt
i ) = Eµ′i [ui(0,σ−i) | yt

i ] =⇒ 0 = V 1
i (µ′

i | yt
i ) ≥ V 1

i (µi | yt
i ) ≥

0 =⇒ Vi(µi | yt
i ) = Eµi [ui(0,σ−i) | yt

i ] and Vi(µi | yt
i ) = Eµi [ui(1,σ−i) | yt

i ] =⇒ 0 = V 0
i (µi | yt

i ) ≥
V 0

i (µ′
i | yt

i )≥ 0=⇒Vi(µ′
i | yt

i )= Eµ′i [ui(1,σ−i) | yt
i ].

In order to conclude the proof of Theorem 3(ii), let τi and τ′i denote the earliest optimal stopping
times associatedwithµi andµ′

i. Then, byCorollary 2,
{
ω ∈Ω

∣∣∣ τi(ω)≤ t and 1 ∈ (resp. ∉)A∗
i (µi | yτi

i (ω))
}
⊆

(resp.⊇)
{
ω ∈Ω

∣∣∣ τ′i(ω)≤ t and 1 ∈ (resp. ∉)A∗
i (µ′

i | y
τ′i
i (ω))

}
.

Proof of Theorem 3(iii). Let

N :=
{

n ∈N2
0 | ∃yt

i : (i) t = n0 +n1, (ii)
∑

ℓ∈[1.. t]
yi,ℓ = n1, and (iii) ∀ℓ≤ t,Vi(µi | yℓi )> vi(µi | yℓi )

}
,

and, for j ∈ {0,1}, let N j := {n ∈N2
0 | n− ( j,1− j) ∈ N }. Note that, if n ∈ N j , then there is some

sequence yt
i satisfying t = n0 + n1,

∑
ℓ∈[1.. t] yi,ℓ = n1, and along which player i decides to keep

sampling every period (according to τi), i.e. Vi(µi | yℓi ) > vi(µi | yℓi ) for all ℓ < t, and decides to
stop at yt

i and take action j—a consequence of Lemma 5. Let Ti := supsupp{τi} (where supp is
defined with respect to µi). By Remark 1, Ti <∞ and thus, ∀n ∈N , n0+n1 < Ti and N is finite.
Below we implicitly rely on the fact that, if (n0,n1), (n′

0,n′
1) ∈N j and n′

1− j > n1− j , then n′
j ≥ n j ,

which is implied by Corollary 2.

We recursively define the probability of stopping and choosing action 1. Define the asymmetric
part of a linear order on N given by n▷ n′ if and only if n′

1 > n1 or n′
1 = n1 and n′

0 > n0. Let
p : N × [0,1] → [0,1] be given by p(n;σ−i) := σ−i if n+ (0,1) ∈ N1 and p(n;σ−i) := σ−i p(n+
(0,1);σ−i)+ (1−σ−i)p(n+ (1,0);σ−i) if otherwise; p can be recursively defined on n ∈ N in-
creasing with respect to ▷. Extend p to n ∈ N j by letting p(n;σ−i) = j if n ∈ N j . Note that
p((0,0);σ−i)=Pσ−i (1= A i(µi | yτi

i ))= Eσ−i [σ
∗
i (µi | yτi

i )].

We now show by induction that, if (0,0) ∈N , p((0,0);•) is C ∞ and strictly increasing. Note that
for n : n′▷n for all n′ ̸= n in N , n0+n1 = Ti−1 and p(n;σ−i)=σ−i is C ∞ and strictly increasing
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in σ−i and 0= p(n+ (0,1);σ−i)< p(n+ (0,1);σ−i)= 1, ∀σ−i ∈ [0,1).

Suppose that, for all n′ ∈ N : n▷ n′, p(n′;•) is C ∞ and strictly increasing, and that p(n′ +
(1,0);•) < p(n′ + (0,1);•). As p(n;σ−i) = σ−i p(n + (0,1);σ−i)+ (1−σ−i)p(n + (1,0);σ−i) and
n▷ n+ (1,0),n+ (0,1), then p(n+ (0,1);•) and p(n+ (1,0);•) are C ∞, strictly increasing, and
satisfy p(n+ (1,0);•) < p(n+ (0,1);•). Then p(n;•) ∈C ∞ and ∂

∂σ−i
p(n;σ−i) = p(n+ (0,1);σ−i)−

p(n+ (1,0);σ−i)+σ−i
∂

∂σ−i
p(n+ (0,1);σ−i)+ (1−σ−i) ∂

∂σ−i
p(n+ (1,0);σ−i)> 0 for all σ−i ∈ [0,1).

To obtain that Pσ−i (1 = A∗
i (µi | yτi

i ) and τi ≤ t) = Eσ−i [σ
∗
i (µi | yτi

i )1τi≤t] is also C ∞ and strictly
increasing inσ−i ∈ [0,1) for t ≥ n1(0), it is necessary to restrictN . Define n1(m) := n1 if (m,n1) ∈
N1 and letN t := {n ∈N | n0+n1(n0)≤ t}, N t

j := {n | n−(1− j, j) ∈N }. Let pt : N ×[0,1]→ [0,1]

be given by pt(n;σ−i) :=σ−i if n+(0,1) ∈N t
1 and pt(n;σ−i) :=σ−i p(n+(0,1);σ−i)+(1−σ−i)p(n+

(1,0);σ−i) if otherwise. Extend pt to n ∈ N t
j by letting pt(n;σ−i) = j if n ∈ N t

j . An analogous
inductive argument applied to pt delivers the result. For t < n1(0), Pσ−i (1= A∗

i (µi | yτi
i ) and τi ≤

t)= 0, for all σ−i ∈ [0,1].

Proof of Lemma 5. Label player i’s actions so that ui(1,σ−i)−ui(0,σ−i) is increasing in σ−i.
If, (i) ui(1,σ−i)−ui(0,σ−i)≤ 0 ∀σ−i or (ii) ui(1,σ−i)−ui(0,σ−i)≥ 0 ∀σ−i, then τi = 0. Suppose
then that τi > 0 and note a−i = argmaxai∈A i

ui(ai,a−i). Let Vi(µi) > vi(µi) and Vi(µi | a−i) =
Eµi [ui(1− a−i,σ−i) | a−i] and observe that, from Lemma 9, 0 = V a−i

i (µi | a−i) ≥ V a−i
i (µi) ≥ 0,

which implies Vi(µi)= Eµi [ui(1−a−i,σ−i)]≤ vi(µi), a contradiction.

Proof of Proposition 2. Note that in a binary action game there are multiple unique Nash
equilibria if and only if for any i ∈ I , ui(1,1)−ui(0,1),ui(0,0)−ui(1,0) > 0. This implies that,
for both players, both actions are undominated and so, by Lemma 4, players sample at least once
whenever the sampling costs are sufficiently low. By Lemma 5, if σ−i = 1 (=0) and τi > 0, then
Eσ−i [σ

∗
i (µi | yτi

i )]= 1 (=0). Hence, (0,0) and (1,1) are both Nash equilibria and sequential sampling
equilibria.

Recall that, by assumption, ui(1,σ−i)−ui(0,σ−i) is strictly monotone. If there is a unique Nash
equilibrium, either (i) both players have aweakly dominant action; (ii) one player has both actions
undominated, and the other has a weakly dominant action; or (iii) both players have undomi-
nated actions. In (i), uniqueness of a sequential sampling equilibrium follows as both players
always choose their weakly dominant action. In (ii), the player with the weakly dominant ac-
tion chooses it with probability 1, and the opponent, whenever they sample at least once, by
Lemma 5, will choose the best response to the weakly dominant action with probability 1, thus
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entailing a unique sequential sampling equilibrium. In (iii), uniqueness of a Nash equilibrium
implies a payoff structure akin to a matching pennies game: one player, i, wants to match the
other, i.e. ui(1,σ j)−ui(0,σ j) is strictly increasing, and their opponent j seeks to mismatch, i.e.
u j(1,σi)−u j(0,σi) is strictly decreasing. Consequently, by Theorem 3, σ j 7→ bi(σ j)= Eσ j [σ

∗
i (µi |

yτi
i )] ∈ [0,1] is increasing, and σi 7→ b j(σi) = Eσi [σ

∗
j (µ j | yτ j

j )] ∈ [0,1] is decreasing, both are con-
tinuous, and therefore their graph has a unique intersection. Lemma 5 clarifies that the sequential
sampling equilibrium is unaffected by the selection of tie-breaking σ∗

i , σ
∗
j .

Proof of Proposition 3. Let B(σ−i, t) to denote a Beta distribution with parameters α,β ≥ 0,
such that t = α+β> 0 and σ−i = α/t, with the convention that B(1, t) and B(0, t) correspond to
Dirac measures on 1 and 0, respectively. Label player i’s actions so that ui(1,σ−i)−ui(0,σ−i) is
increasing in σ−i.

Let V ai
i be as defined in the proof of Lemma 9. We show the following properties of V ai

i :

Lemma 10. V 1
i (B(σ−i, t)) (resp. V 0

i (B(σ−i, t))) is (1) increasing (resp. decreasing) in σ−i; (2) convex

in σ−i; (3) decreasing in t; (4) continuous in (σ−i, t).

Proof. (1) follows immediately from Lemma 9, since for σ−i >σ′
−i, B(σ−i, t)≥SSD B(σ′

−i, t).

For (2), note that V 1
i (B(σ−i, t))=V 0

i (B(σ−i, t))+ui(1,σ−i)−ui(0,σ−i), and thus it suffices to show
convexity of V 1

i (B(σ−i, t)) in σ−i. Let z(σ−i, t) be a random variable that delivers 1
t+1 (tσ−i +1)

with probability σ−i, and 1
t+1 (tσ−i+0) with probability 1−σ−i. Note that, for any w : [0,1]×R++

that is increasing and convex in the first argument, for any σ−i ≥ σ′
−i, λ ∈ (0,1), and σ′′

−i :=
λσ−i + (1−λ)σ′

−i, straightforward algebra shows that E[w(z(σ′′
−i, t))] ≤ λE[w(z(σ−i, t))]+ (1−

λ)E[w(z(σ′
−i, t))].

Observe that, by definition, v1
i (B(σ−i, t)) = maxai∈A i ui(ai,σ−i)−ui(0,σ−i), which is increasing

and convex in σ−i and invariant with respect to t.

Now we show that if w(B(σ−i, t)) is increasing and convex in σ−i, so is B1
i (w)(B(σ−i, t)):

B1
i (w)(B(σ′′

−i, t))=max
{
v1

i (B(σ′′
−i, t)) , E[w(z(σ′′

−i, t+1))]− ci
}

≤max{λv1
i (B(σ−i, t))+ (1−λ)v1

i (B(σ′
−i, t)) , λE[w(z(σ−i, t+1))]+ (1−λ)E[w(z(σ′

−i, t+1))]− ci}

≤λB1
i (w)(B(σ−i, t))+ (1−λ)B1

i (w)(B(σ′
−i, t)).

By similar arguments as in Lemma 9—V 1
i is a fixed point of B1

i which can be obtained by applying
the n-th composition of B1

i with itself to v1
i — we have that V 1

i (B(σ−i, t)) is convex in σ−i, and
thus so is Vi(B(σ−i, t)).
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For (3), note that E[z(σ−i, t)] = σ−i and that, for t < t′, z(σ−i, t) is a mean-preserving spread of
z(σ−i, t′); hence for any convex function f , E[ f (z(σ−i, t))]≥ E[ f (z(σ−i, t′))]. Take any w such that
w(B(σ−i, t)) is convex in σ−i and decreasing in t. Then, for any t′ > t,

Bi(w)(B(σ−i, t′))=max
{
vi(B(σ−i, t′)) , E[w(B(z(σ−i, t′), t′))]− ci

}
=max

{
vi(B(σ−i, t)) , E[w(B(z(σ−i, t′), t′))]− ci

}≤max
{
vi(B(σ−i, t)) , E[w(B(z(σ−i, t′), t))]− ci

}
≤max {vi(B(σ−i, t)) , E[w(B(z(σ−i, t), t))]− ci}= Bi(w)(B(σ−i, t)).

By the same argument as before, Vi(B(σ−i, t)) is then decreasing in t.

Finally, (4) follows immediately from the fact that for any (σn
−i, tn)→ (σ−i, t), B(σn

−i, tn)→ B(σ−i, t)

(with respect to ∥·∥LP ), and therefore by Proposition 1, Vi(B(σ−i, t)) is continuous in (σ−i, t).

By Corollary 2, ifVi(B(σ−i, t))= ui(ai,σ−i) for ai = 1 (resp. ai = 0), thenVi(B(σ′
−i, t))= ui(ai,σ′

−i)

for any σ′
−i ≥ σ−i (resp. ≤), since B(σ′

−i, t) ≥SSD B(σ−i, t). Define σ−i(t) := min{σ−i ∈ [0,1] |
Vi(B(σ−i, t))= ui(1,σ−i)} and σ−i(t) :=max{σ−i ∈ [0,1] |Vi(B(σ−i, t))= ui(0,σ−i)}.

That σ−i(t) is continuous and decreasing in t follows from continuity of Vi(B(σ−i, t)) in (σ−i, t),
continuity of ui(1,σ−i) in σ−i, and the fact that Vi(B(σ−i, t)) is decreasing in t and ui(1,σ−i)−
ui(0,σ−i) is increasing in σ−i. An analogous argument applies to show that σ−i(t) is continuous
and increasing in t.

Finally, we prove that both these functions converge to σ̃−i. To see this, note that for µi given by
B(σ−i, t), simple algebra shows that Eµi [vi(µi | yi)]−vi(µi)= E[vi(z(σ−i, t))]−vi(σ−i) is maximized
for any t at σ−i = σ̃−i : σ̃−iui(1,1)+ (1− σ̃−i)ui(1,0) = σ̃−iui(0,1)+ (1− σ̃−i)ui(0,0), with maxi-
mum value 1

t+1 (ui(1,1)−ui(0,1)+ui(0,0)−ui(1,0))(1−σ̃−i)σ̃−i. Therefore, it is always optimal to
keep sampling at belief B(σ̃−i, t) if t < T := (ui(1,1)−ui(0,1)+ui(0,0)−ui(1,0))(1−σ̃−i)σ̃−i/ci−1.
From here, one can deduce that τi ≤ T for any Beta prior and that σ−i(t) > σ̃−i > σ−i(t) for all
t < T and σ−i(t)= σ̃−i =σ−i(t), for all t ≥ T .

Proof of Theorem 4. We prove the result when priors allow for correlation; adjusting the proof
to accommodate the case in which they do not is tedious but straightforward.

Let Σ∗
i (µi) := argmaxσi∈∆(A i)Eµi [ui(σi,σ−i)] denote the set of maximizers at belief µi.

We first prove that if a sequence of probability measures µm
i ∈∆(∆(A−i)) weak∗ converges to δσ−i

and ai ∈ A i is not a best response to σ−i, then for any sequence of distributions σm
i ∈ Σ∗

i (µm
i ),

σm
i (ai) → 0. Note that Eµi [ui(σi,σ−i)] is jointly continuous in (σi,µi) with respect to the prod-

uct metric, where ∆(A i) is endowed with the standard Euclidean metric and ∆(∆(A−i)) with the
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Lévy-Prokhorov metric. Then, by Berge’s maximum theorem, Σ∗
i is upper-hemicontinuous and

compact-valued. Supposing that σm
i (ai) does not converge to zero, implies that for any conver-

gent subsequence of σm
i , its limit assigns strictly positive probability to ai being chosen, while

also belonging to Σ∗
i (δσ−i ), a contradiction.

Now take any sequence of profiles of action distributions {σn}n as in the statement of the theorem
and let {σm}m be a convergent subsequence of {σn}n with limit σk. Suppose that σk

i is not a best
response to σk

−i. This implies that ∃ai ∈ A i such that σk
i (ai) ≥ δ > 0 for some δ > 0 and ai is

not a best response to σk
−i. By continuity of ui, note that if ai is not a best response to σk

−i,
then it is not a best response to any σ−i ∈ Bϵ(σk

−i) for small enough ϵ > 0. By convergence of
σm, we then obtain that for all large enough m, ai is not a best response to σm

−i and σ
m
i (ai) ≥

δ/2. That is, Eσm
−i

[σ∗
i (µi | y

τm
i

i )(ai)] ≥ δ/2 ∀ large enough m, from which we deduce Pσm
−i

(σ∗
i (µi |

y
τm

i
i )(ai) ≥ δ/4) ≥ δ/4. In turn, from the above, this implies that there must be ϵ > 0 such that
Pσm

−i
(∥µi | y

τm
i

i −δσm
−i
∥LP ≥ ϵ) ≥ δ/4. We now prove that this cannot be the case, that is, we show

that limm→∞Pσk
−i

(∥µi | yi
τm

i −δσk
−i
∥LP > ϵ)= 0.

It would be natural to expect that, with sampling costs going to zero, optimal stopping time grows
unboundedly and, by the law of large numbers, players learn the true distribution of actions of
their opponents, best respond to it, and sequential sampling equilibrium converges to a Nash
equilibrium. But, conditional on stopping, the set of signals are neither independent or identically
distributed, so we cannot apply the law of large number directly. We then need to take a detour.

Denote player i’s the associated earliest optimal stopping time by τm
i and their value function

(which depends on cm
i ) as V m

i . From Lemma 4, there is {Tm}m such that τm
i ≥ Tm and Tm ↑∞.

By Diaconis and Freedman (1990), there is ϵ(t) nonincreasing and such that ϵ(t)→ 0 as t →∞ such
that ∥µi | yt

i −δyi
t∥LP ≤ ϵ(t) uniformly over sequences of t observations, yt

i ∈ Yi. Since, taking
yi,ℓ ∼σ−i, ∥δyi

t−δσ−i∥LP = ∥yi
t−σ−i∥ is a (bounded) supermartingale with respect to σ−i, by the

optional stopping theorem, for τi ≥ t, Eσ−i [∥δyi
τi −δσ−i∥LP ]≤ Eσ−i [∥δyi

t−δσ−i∥LP ]. Hence, for any
σ−i, Eσ−i [∥µi | yi

τm
i −δσ−i∥LP ] ≤ Eσ−i [∥δyi

τm
i
−δσ−i∥LP | yTm

i ]+ ϵ(Tm) ≤ Eσ−i [∥δyi
Tm −δσ−i∥LP ]+

ϵ(Tm)≤ Eσ−i [∥yi
Tm −σ−i∥]+ϵ(Tm).

Let xm := Eσm
−i

[∥yi
Tm −σm

−i∥] ∈ [0,2]. Suppose that {xm}m does not converge to 0. Take any con-
vergent subsequence xℓ→ γ> 0. For all large enough ℓ, xℓ ≥ γ/2. That is, Eσℓ−i

[∥yi
Tℓ−σℓ−i∥]≥ γ/2,

implying that Pσℓ−i
(∥yi

Tℓ−σℓ−i∥ ≥ γ/4)≥ γ/4, as otherwise Eσℓ−i
[∥yi

Tℓ−σℓ−i∥]≤ (1−γ/4)γ/4+γ/4≤
γ/4 < γ/2. However, by the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (Massart, 1990)
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Pσℓ−i
(∥yi

Tℓ −σℓ−i∥ ≥ γ/4)≤ 2exp(−Tℓγ2/8)→ 0, a contradiction.

We conclude that limm→∞Eσm
−i

[∥µi | yi
τm

i −δσm
−i
∥LP ]≤ Eσm

−i
[∥yi

Tm −σm
−i∥]+ϵ(Tm)→ 0.

Proof of Proposition 5. By Diaconis and Freedman (1990), for any µi, there is Ti <∞ such that
∀t ≥ Ti, Eµi [σ

′
−i | at

−i] ∈ Bϵi (δa−i ). Take T :=maxi∈I Ti. By Lemma 4, there is c such that, τi ≥ T

for every player i for which ai is not always a best response (where c may depend on µ). Hence,
for any µ there is an N such that ∀n ≥ N , a is a sequential sampling equilibrium of 〈Γ,µ, cn〉.
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Online Appendix

Appendix B. General Information Structures
In this section, we extend sequential sampling equilibrium to accommodate analogy partitions
and more general information structures. For brevity, let us consider the case in which players’
beliefs allows for correlation.

B.1. Existence of a Sequential Sampling Equilibrium
Let us simplify the notation in our baseline setup: Yi := A−i, Pi := ∆(Yi), µi ∈ ∆(Pi) with full
support, and ui : A i ×Pi →R, a continuous function.

An analogy partition for player i can be represented by a surjective function f i : Yi → Zi, where
|Zi| < |Yi| <∞. Naturally, it defines a garbling: instead of observing yi, the player has access to
coarser information f i(yi). More generally, one can consider |Zi| × |Yi| stochastic matrices Bi,
where Bi(z, y) ∈ [0,1] and ∑

z∈Z Bi(z, y)= 1, and such that Bi has rank |Zi| < |Yi|.29

Let Q i := ∆(Zi) and νi be the pushforward measure on Q i given µi and Bi, where for every
measurable set S ⊆ Q i, νi(S) := µi({pi ∈ Pi | Bi pi =∈ S}). We assume that the player now has
access to iid draws from a fixed Bi pi,0 ∈ Q i. It is straightforward to adjust the definition of the
optimal stopping problem, expand the definition of an extended game with the additional primi-
tives {πi}i∈I , where πi denotes the information structure defined by (Bi, Zi), and have sequential
sampling equilibrium accommodate such more general information structures.

We provide the following sufficient condition for existence of a sequential sampling equilibrium:

Theorem 6. Let G := 〈Γ,µ, c,π〉 be an extended game such that for every player i, µi admits a

continuous density, and rank(Bi)= |Zi| < |A−i|. Then G admits a sequential sampling equilibrium.

Proof. Let JBi := det(BiBT
i ), which is strictly positive, as rank(Bi)= |Zi|. For convenience, define

πi : Pi →Q i as πi(pi) := Bi pi. Denote by gµi the density of µi. Denoting λn the n-dimensional
Lebesgue measure, by the coarea formula (see Evans and Gariepy, 2015, Theorem 3.10) we have

Eµi [ui(ai, pi) | zt
i]=

∫
Pi

∏
ℓ∈[1..t]

(Bi pi)(zt
i,ℓ)ui(ai, pi)gµi (pi)dλ|Yi |−1(pi)

=
∫

Q i

∏
ℓ∈[1..t]

qi(zt
i,ℓ)

∫
π−1

i (qi)
ui(ai, pi)gµi (pi)JBi

−1/2 dλ|Yi |−|Zi |(pi)dλ|Zi |−1(qi).

29Allowing for |Zi| = |Yi| is possible, but makes the proofs more cumbersome.
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Define
ui(ai, qi) :=

∫
π−1

i (qi)
ui(ai, pi)gµi (pi)dλ|Yi |−|Zi |(pi)JBi

−1/2.

We will now prove the following:

Lemma 11. ui(ai, qi) is continuous in qi.

Proof. We first show that π−1
i is a continuous correspondence.

Let K(Pi) denote the set of nonempty, compact, and convex subsets of Pi. Take any qi,n → qi

and pi,n ∈π−1
i (qi,n) converging to pi and note that Bi pi = limn Bi pi,n = limn qi,n = qi, and thus

π−1
i is upper-hemicontinuous (uhc).

To show that it is lower-hemicontinuous (lhc) take any open setU ⊆ Pi such thatU∩π−1
i (qi) ̸= ;.

This implies that there is pi ∈ int(U ∩π−1
i (qi)) and ϵ > 0 such that Bϵ(pi) ⊂ U ∩π−1

i (qi). As πi

is a linear mapping, then by the open mapping theorem (Rudin, 1973, Theorem 2.11), πi(Bϵ(pi))

is open and, therefore, ∃δ > 0 such that Bδ(qi) ⊆ πi(Bϵ(pi)). Consequently, ∀q′
i ∈ Bδ(qi), ; ̸=

π−1
i (q′

i)∩Bϵ(pi)⊆π−1
i (q′

i)∩U .

We highlight that π−1
i is not only continuous, but also compact- and convex-valued correspon-

dence, from Q i to Pi. When restricted to πi(Pi), it is also nonempty, and thus then π−1
i :πi(Pi)→

K(Pi) is continuous with respect to the Hausdorff metric (see Aliprantis and Border, 2006, The-
orem 7.15).

Let h : Pi → π−1
i (qi) be such that h(pi) := argminp′

i∈π−1
i (qi) ∥pi − p′

i∥∞. By continuity of π−1
i , for

any ϵ, there is an N such that ∀n ≥ N , π−1
i (qi,n)⊂ Bϵ(π−1

i (qi)). Hence, for large n, for any point
in π−1

i (qi,n), there is a point in π−1
i (qi) that is at most ϵ away. As u(ai, pi)gµi (pi) is continu-

ous in pi and, by Heine-Cantor theorem, uniformly so (Pi is compact). Hence, for any q′
i close

enough to qi, the difference in the payoff function will be well-approximated by the the differ-
ence in measure (up to a constant scaling factor), |ui(ai, q′

i)− ui(ai, qi)| ≈ |λ|Yi |−|Zi |(π−1
i (q′

i))−
λ|Yi |−|Zi |(π−1

i (qi))|.
In the sequel, we show that the measure is continuous in qi. Take any sequence (qi,n)n ⊆πi(Pi) (a
compact set) satisfying qi,n → qi. As π−1

i is continuous, and, in particular, upper hemicontinuous,

limsup
n

λ|Yi |−|Zi |(π−1
i (qi,n))≤λ|Yi |−|Zi |(π−1

i (qi)),

since for any open set containing π−1
i (qi), it will contain π−1

i (qi,n) for qi,n sufficiently close to
qi.
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We now argue that the above inequality holds with equality. To see this, fix an arbitrary ϵ > 0

and take a collection of points on the boundary of π−1
i (q) such that any two points are not closer

than ϵ/2 and not farther away than ϵ > 0. This implies that we have a finite collection of such
points. As π−1

i is lhc, there is a δ> 0 such that for every q′
i ∈ Bδ(qi), π−1

i (q′
i) contains a point in

an ϵ/4 neighborhood of every point in our collection, and by convexity, their convex hull. This
implies that we can approximate arbitrarily well the interior of π−1(qi) taking any n sufficiently
large; i.e. there is a γ(ϵ) > 0 such that λ|Yi |−|Zi |(π−1

i (qi))−γ(ϵ) ≤ λ|Yi |−|Zi |(π−1
i (q′

i)), with γ(ϵ) → 0

as ϵ→ 0.

Hence, as qi,n → qi, for any qi,n ̸= qi, λ|Yi |−|Zi |(π−1
i (qi,n))→λ|Yi |−|Zi |(π−1

i (qi)).
We can then redefine the problem by considering νi to be uniform on Q i and take ui(ai, qi) as
the utility function.

Redefining

• vi :∆(Q i)→R as vi(ν′i) :=maxai∈A i Eνi [ui(ai, qi)];

• Vi :∆(Q i)→R as Vi(νi) := supτ′∈Ti
Eνi [vi(νi | zτ

′
i − ciτi];

• τi(ω) := inf{t |Vi(νi | zt
i(ω))= vi(νi | zt

i(ω))};

• bi(pi) := Eπi(pi)[σ
∗
i (zτi

i )], for some fixed zt
i 7→σ∗

i (zt
i) ∈ argmaxσi∈∆(A i)Eνi [ui(ai, qi) | zt

i].

we obtain—by analogous arguments to Proposition 1—that Vi is continuous and, by Berk (1966),
that νi,t weak∗ converges to Bi pi, pi-a.s., when zi,t ∼ πi(pi), for all t. Therefore, τi is finite
pi-a.s., for any pi ∈ Pi. Finally, an analogous version of Lemma 1 applies and bi is continuous in
pi and maps to ∆(A i). Hence, by essentially the same arguments as in Theorem 1, a sequential
sampling equilibrium exists.

In the above, we restricted to the case in which |Zi| < |Yi|. If instead rank(Bi) = |Zi| = |Yi|, we
have the following:

Proposition 8. Let G := 〈Γ,µ, c,B, Z〉 be an extended game such that for every player i, rank(Bi)=
|Zi| = |A−i|. Then G admits a sequential sampling equilibrium.

Proof. Note that now Bi is invertible and πi(pi) := Bi pi is bijective when restricting its domain
to πi(Pi). Hence, πi admits a continuous inverse (note it is a linear mapping). Since for any
pi ∈ ∆(A−i), and µi has full support, πi(pi) is in the support of the pushforward measure νi :=
πi#µi ∈ ∆(Q i). Thus, for any pi, by Berk (1966), νi,t weak∗ converges to a Dirac on πi(pi).
Moreover, if νi ∈ ∆(Q i) is the pushforward measure given µi ∈ ∆(Pi) and πi : Pi → Q i, we now
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also have that µi is νi’s pushforward measure given π−1
i : Q i → Pi. Then, weak∗convergence of

νi,t to δqi implies weak∗ convergence of the µi,t to δπ−1
i (qi). Uniform continuity of Vi :∆(Pi)→R

(as originally defined on the main text) delivers existence of an equilibrium as in Theorem 1.

Naturally, all the above can also be extended to Bayesian games.

B.2. Relation to Analogy-Based Expectation Equilibrium
Finally, we discuss convergence to analogy-based expectation equilibria—see Jehiel (2021) for a
survey. In line with the literature, we consider payoffs that are linear in the distribution of actions.

This solution concept when applied to normal-form games (including Bayesian games) can be
readily translate to our setup: σ is an analogy-based expectation equilibrium if, for each player
i ∈ I ,

(1) qi(zi)=∑
a−i∈ f −1

i (zi)σ−i(a−i) for every zi ∈ Zi;

(2) ui(ai, zi) :=∑
a−i∈ f −1

i (zi)
1

| f −1
i (zi)|ui(ai,a−i); and

(3) σi ∈ argmaxσ′
i∈∆(A i)Eqi ui(ai, zi).

Recalling that f i is a surjective mapping from A−i to Zi, condition (1) states that each player i

bundles difference action profiles (or players, or types, contingencies) a−i into the same ‘analogy
class’ zi. Condition (2) can be read as a simplification device by player i: the player cannot
distinguish across the different a−i within the same analogy class zi, they consider the average
behavior, as if the probability of each a−i within the same analogy class were the same. Then
(condition (3)), they best respond to the expected payoff given the actual distribution over analogy
classes, but assuming that, within the analogy class, distribution over contingencies is uniform.

In the above setup, this is achieved whenever µi is uniform. The result follows from arguments
analogous to those in the proof of Theorem 4, but with a crucial simplification: the linearity
of payoffs in distributions, the posterior means pin-down the set of best responses. And, upon
stopping, Eµi [q

′
i | zτi

i ] = τi
τi+|A−i | zi

τi + 1
τi+|A−i | . Since, for any player i for which no action is al-

ways a best response, there is a lower bound to the stopping time τi ≥ Tn, that grows unbound-
edly as sampling costs vanish, cn

i → 0 (Lemma 4), by a similar application of the optional stop-
ping theorem as in the proof of Theorem 4, Eqi

[∥∥∥Eµi [q
′
i | z

τm
i

i ]− qi

∥∥∥]
≤ Eqi

[∥∥Eµi [q
′
i | zTm

i ]− qi
∥∥]≤

Tm

Tm+|A−i |Eqi [∥zi
Tm − qi∥]+2 1

Tm+|A−i | . Then, by the law of large numbers, Eqi [∥zi
Tm − qi∥] → 0.

This provides a shorter route to show that players’ posterior means converge to the underlying
true distribution.
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Appendix C. Experimental Data and Analysis Details
In this appendix, we provide details on the experimental data used along with additional analysis.
A total of 164 subjects were recruited for sessions run in the Columbia Experimental Laboratory
in the Social Sciences (CELSS) to play matching pennies games as the one depicted in Figure 1.
Subjects are randomly and anonymously matched, but their roles are fixed throughout. Player
M’s payoff to action a, δM , took one of six values (here rescaled by a factor of 20 for convenience):
4, 2, 1/2, 1/4, 1/10, and 1/20.

The experiment consisted of two stages. In the first stage, actions elicited and each game is played
twice. In the second stage, each game is played 5 times and either both actions and beliefs about
the probability that the opponent chooses action a are elicited or only actions are elicited. Beliefs
here refer to point estimates reported by the subjects, neglecting any strategic uncertainty. In
other words, belief reports would correspond to posterior means in our framework. Elicitation of
actions and beliefs is incentive-compatible and robust to risk attitudes and game payoffs corre-
spond to probability points towards prizes of $10. Throughout, no feedback was provided, game
order was randomized and, importantly for our purposes, decision times are recorded. Other
details on the experimental design can be found in Friedman and Ward (2022).

There are some important caveats to note. First, beliefs elicited in the second stage refer to op-
ponent’s actions from the first stage. This, together with the fact that elicitation of actions and
beliefs is sequential instead of simultaneous, with beliefs being elicited first, may raise concerns
of whether reported beliefs are a good proxy for the beliefs that subjects hold when taking an
action. Second, while decision time was recorded, subjects were forced to wait a minimum of 10
seconds before reporting their beliefs. As the subjects’ decision times will be used as a proxy to
test sequential sampling equilibrium’s predictions for stopping times, the forced minimum de-
cision time may undermine the exercise. Finally, the authors highlight there being evidence of
“no-feedback learning” as the same subject plays the same gamemultiple times. This is especially
worrying when comparing instances where only actions are elicited with those where both ac-
tions and beliefs are. In order to avoid issues due to experience or learning, and focus on initial
response as much as possible, we restrict attention to choice data when beliefs are not elicited.

Table 2 documents the own- and opponent-payoff choice effects mentioned on Section 3.2: as
player M’s payoffs to action a increase, subjects in that tend to choose the action more often and
action b less often, while the opposite is true for subjects in the opponent’s role, player C. In
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{Player M chooses a} {Player C chooses a}
OLS Logit OLS Logit
(1) (2) (3) (4)

δM 0.230∗∗∗ 0.949∗∗∗ -0.772∗∗∗ -3.430∗∗∗

(0.041) (0.169) (0.036) (0.197)
Intercept 0.329∗∗∗ -0.702∗∗∗ 0.842∗∗∗ 1.522∗∗∗

(0.018) (0.079) (0.017) (0.090)
(Pseudo) R2 0.02 0.01 0.20 0.15
Observations 1782 1782 1806 1806
Heteroskedasticity-robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2: Payoffs and Choices: Own- and Opponent-Payoff Choice Effect

Notes: The table exhibits the association between player M’s payoff to action a and the frequency with
which subjects in each role choose action a. δM parametrizes player M’s payoff to action a. The games in
question are generalized matching pennies games as given in Figure 1, for γC = 1 (and scaled by 20). The
sample includes data from rounds in which there is no belief elicitation. The data is from Friedman and
Ward (2022).

Player C Beliefs
σ
τC
M | δHigh

M ≥FOSD σ
τC
M | δLow

M
High Low KS-Statistic
(1) (2) (3)
4 2 0.33∗∗∗

2 1/2 0.76∗∗∗

1/2 1/4 0.40∗∗∗

1/4 1/10 0.23∗∗∗

1/10 1/20 0.23∗∗∗
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 3: Opponent Payoff and Beliefs: FOSD Tests

Notes: The table exhibits the results of two-sample Kolmogorov-Smirnov tests for first-order stochastic
dominance of the distribution of reported beliefs by subjects in the role of player C in games with different
values of δM , High (col (1)) and Low (col (2)). Column (3) presents the test statistic, with number of
observations (n,m) = (280,280). δM parametrizes player M’s payoff to action a. The games in question
are generalized matching pennies games as given in Figure 1, for γC = 1 (and scaled by 20). The data is
from Friedman and Ward (2022).

the main text, Table 1 provides support for the collapsing boundaries result presented in Section
3.3: a negative association between the distance of subjects’ reported beliefs to their indifference
point and the decision time. Related to this result, the main text discussed a first-order stochastic

55



dominance shift of beliefs for player C as δM (player M’s payoffs to action a) increases. Figure 4
exhibits such lawful relation; appropriate statistical tests are now given in Table 3.

Appendix D. Misspecified Priors
As in finite dimensional spaces, the Bayesian learning is consistent for any distribution if and only
if the prior has full support (Freedman, 1963), Proposition 1 uncovers an important consequence
of Bayesian learning for optimal stopping: Not only is the decision-makers’ optimal stopping time
finite with probability one, for any true distribution of their samples, it is also bounded uniformly
across all distributions of samples. This effectively transforms the optimal stopping problem
from infinite to finite horizon, allowing for a solution to be obtained by backward recursion,
simplifying the problem significantly.

The intuition underlying the result is that if the prior has full support, the posterior accumulates
around the empirical mean. Then, one can guarantee a bound on the rate at which the posterior
accumulates around the empirical mean, depending on the number of observations but not on
the sample path itself (Diaconis and Freedman, 1990). With this, it is possible to bound the gains
in expected payoff of sampling further regardless of the realized sample path and show that there
is a number of observations after which the cost of an additional observation dwarfs the expected
gain, regardless of realizations. Hence, one concludes that the decision-maker necessarily stops
after such number of samples and we can find an explicit upper bound for the stopping time that
depends only on the prior µi, payoffs ui, and sampling cost ci.

This stands in contrast to the canonical problem in Arrow et al. (1949) where the prior has finite
support, and optimal stopping time is not bounded.30 Further, it stands in sharp contrast to the
case in which beliefs are misspecified.

We now provide an example in which misspecification leads to a player never stopping with
probability 1 (with respect to the true distribution of opponents’ actions), and sequential sampling
equilibrium fails to exist.

Let Γ be a two-player game in which player i’s opponent has three possible actions, a, b, and
c, and always chooses c (e.g. because c is dominant, or because their sampling cost is too high
30Similarly, optimal stopping time is also not bounded in the continuous-time version of the canonical problem, with
Gaussian noise, be it with (Moscarini and Smith, 1963) or without experimentation concerns (Chernoff, 1961). In
some cases with finite support prior, however, stopping time can be bounded, as in the case with Poisson arrival
of conclusive information, but not when the decision-maker can choose from different information sources (Che
and Mierendorff, 2019).
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and c is uniquely optimal under their prior). Denote σ−i = (σ−i(a),σ−i(b),σ−i(c)) ∈ ∆({a,b, c}).
Suppose player i’s prior beliefs about σ−i, µi, are such that player i assigns probability 1/2 to
(1/2,1/6,1/3) and probability 1/2 to (1/6,1/2,1/3). Player i can choose either a or b and player i’s
payoffs are given by ui(ai,a−i)= 1 if ai = a−i, and 0 if otherwise. Then, if yt

i is such that yi,ℓ = c

for all ℓ ∈ [1 .. t], µi | yt
i = µi. Under their prior, vi(µi) = 1/4, vi(µi | a) = vi(µi | b) = 3/4, and

vi(µi | c) = vi(µi) = 1/4, hence Eµi [vi(µi | yi)] = 2
3

3
4 + 1

3
1
4 = 7

12 . Note that, a necessary condition
for player i to stop is that Eµi [vi(µi | yi)]− vi(µi) ≤ ci. But, since at any sequential sampling
equilibrium player i’s opponent chooses c with probability 1, we have that µi | yt

i = µi and, for
any ci < 1/3, we always obtain Eµi [vi(µi | yi)]− vi(µi) = 1

3 > ci. Therefore, since σ−i(c) = 1,
Pσ−i (τi =∞)= 1.
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